Простой импульсный блок питания на ir2153(d) для усилителя и не только. Зарядное устройство для авто на IR2153 Видео «Изготовление импульсного зарядного устройства своими руками»

ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ СВОИМИ РУКАМИ НА IR2153

Функционально микросхемы IR2153 отличаются лишь установленным в планарном корпусе диода Вольтодобавки:


Функциональная схема IR2153


Функциональная схема IR2153D

Для начала рассмотрим как работает сама микросхема, а уж потом будем решать какой блок питания из нее собрать. Для начала ррасмотрим как работает сам генератор. На рисунке ниже приведен фрагмент резистивного делителя, три ОУ и RS триггер:

В первоначальный момент времени, когда только-только подали напряжение питания конденсатор С1 не заряжен на всех инвертирующих входах ОУ присутствует ноль, а на не инвертирующих положительное напряжение формируеммое резестивным делителем. В результате получается, что напряжение на иневртирующих входах меньше чем на не инвертирующих и все три ОУ на своих выхода формируют напряжение близкое к напряжению питания, т.е. лог единицу.
Поскольку вход R (установка нуля) на триггере инвертирующий, то для него это будет состояние при котором он не оказывает влияние на состояние триггера, а вот на входе S будет присутствовать лог единика, устанавливающая на выходе триггера тоже лог единицу и конденсатор Ct через резистор R1 начнет заряжаться. На рисунке напряжение на Ct показанно синей линией , красной - напряжение на выходе DA1 , зеленой - на выходе DA2 , а розовой - на выходе RS триггера :

Как только напряжение на Ct превысит 5 В на выходе DA2 образуется лог ноль, а когда, продолжая заряжать Ct напряжение достигнет значения чуть больше 10-ти вольт лог ноль появится на выходе DA1, что в свою очередь послужит установкой RS триггера в состояние лог нуля. С этого момента Ct начнет разряжаться, так же через резистор R1 и как только напряжение на нем станет чуть меньше установленноно делитеме значения в 10 В на выходе DA1снова появится лог единица. Когда же напряжение на конденсаторе Ct станет меньше 5 В лог единица появится на выходе DA2 и переведет RS триггер в состояние единицы и Ct снова начнет заряжаться. Разумеется, что на инверсном выходе RS триггера напряжение будет иметь противоположные логические значения.
Таким образом на выходах RS триггера образуются противоположные по фазе, но равные по длительности уровни лог единицы и нуля:

Поскольку длительность управляющих импульсов IR2153 зависит от скорости заряда-разряда конденсатора Сt необходимо тщательно уделить внимание промывке платы от флюса - ни каких утечек ни с выводов конденсатора, ни с печатных проводников платы не должно быть, поскольку это чревато намагничиванием сердечника силивого трансформатора и выходом из строя силовых транзисторов.
Так же в микросхеме есть еще два модуля - UV DETECT и LOGIK . Первый из них отвечает за запуск-остановку генераторного процесса, зависящую от напряжения питания, а второй формирует импульсы DEAD TIME , которые необходимы для исключения сквозного тока силового каскада.
Дальше происходит разделение логических уровней - один становится управляющим верхним плечом полумоста, а второй нижним. Отличие заключается в том, что управление верхним плечом осуществляется двумя полевыми транзисторами, которые, в свою очередь, управляют "оторванным" от земли и "оторванным" от напряжения питания оконечным каскадом. Если рассматривать упрощенную принципиальную схему включения IR2153, то получается примерно так:

Выводы 8, 7 и 6 микросхемы IR2153 являются соответственно выходами VB , HO и VS , т.е. питанием управления верхним плечом, выходом оконечного каскада управления верхним плечом и минусовым проводом модуля управления верхним плечом. Внимание следует обратить на тот факт, что в момент включения управляющее напряжение присутствует на Q RS триггера, следовательно силовой транзистор нижнего плеча открыт. Через диод VD1 заряжается конденсатор С3, посколько его нижний вывод через транзистор VT2 соединен с общим проводом.
Как только RS триггер микросхемы меняет свое состояние VT2 закрывается, а управляющее напряжение на выводе 7 IR2153 открывает транзистор VT1. В этот момент напряжение на выводе 6 микросхемы начинает увеличиваться и для удержания VT1 в открытом состоянии напряжение на его затворе должно быть больше чем на истоке. Поскольку сопротивление открытого транзистора равно десятым долям Ома, то и на его стоке напрежение не намного больше, чем на истоке. Получается, что удержания транзистора в открытом состоянии необходимо напряжение как минимум на 5 вольт больше, чем напряжение питания и оно действительно есть - конденсатор С3 заряжен до 15-ти вольт и именно он позволяет удерживать VT1 в открытом состоянии, поскольку запасенная в нем энергия в этот момен времени является питающим напряжение для верхнего плеча окнечного каскада микросхемы. Диод VD1 в этот моент времени не позволяет разряжаться С3 на шину питания самой микросхемы.
Как только управляющий импульс на выводе 7 заканчивается транзистор VT1 закрывается и следом открывается VT2, который снова подзаряжает конденсатор С3 до напряжения 15 В.

Довольно часто параллельно конденсатору С3 любители устанавливают электролитический конденсатор емкостью от 10 до 100 мкФ, причем даже не вникая в необходимость этого конденсатора. Дело в том, что микросхема способна работать на частотах от 10 Гц до 300 кГц и необходимость данного электролита актуально лишь до частот 10 кГц и то при условии, что электролитический конденсатор будет серии WL или WZ - технологически имеют маленький ers и больше известны как компьютерные конденсаторы с надписями золотистой или серебристой краской:

Для популярных частот преобразования, используемых при создании импульсных блоков питания частоты берут выше 40 кГц,а порой доводят до 60-80 кГц, поэтому актуальность использования электролита попросту отпадает - емкости даже 0,22 мкФ уже достаточно для открытия и удержания в открытом состоянии транзистора SPW47N60C3, который имеет емкость затвора в 6800 пкФ. Для успокоения совести ставится конденсатор на 1 мкФ, а давая поправку на то, что IR2153 не может коммутировать такие мощные транзисторы напрямую, то накопленной энергии конденсатором С3 хватит для управления транзисторами с емкостью затворов до 2000 пкФ, т.е. всеми транзисторами с максимальным током порядка 10 А (перечень транзисторов ниже, в таблице). Если же все таки есть сомнения, то вместо рекомендуемого 1 мкФ используйте керамический конденсатор на 4,7 мкФ, но это безсмысленно:

Было бы не справедлило не отметить, что у микросхемы IR2153 есть аналоги, т.е. микросхемы с аналогичным функциональным назначением. Это IR2151 и IR2155. Для наглядности сведем основные параметры в таблицу, а уж потом разберемся что из них лучше приготовить:

МИКРОСХЕМА

Максимальное напряжение драйвера

Напряжение питания старта

Напряжение питания стопа

Максимальный ток для зарадки затворов силовых транзисторов / время нарастания

Максимальный ток для разрядки затворов силовых транзисторов / время спада

Напряжение внутреннего стабилитрона

100 mA / 80...120 nS

210 mA / 40...70 nS

НЕ УКАЗАНО / 80...150 nS

НЕ УКАЗАНО / 45...100 nS

210 mA / 80...120 nS

420 mA / 40...70 nS

Как видно из таблицы отличия между микросхемами не очень большие - все три имеют одинаковый шунтирующий стабилитрон по питанию, напряжения питания запуска и остановки у всех трех почти одинаковая. Разница заключается лишь в максимальном токе оконечного каскада, от которого зависит какими силовыми транзисторами и на каких частотах микросхемы могут управлять. Как не странно, но самая распиаренная IR2153 оказалась не рыбой, не мясом - у нее не нормирован максимальный ток последнего каскада драйверов, да и время нарастания-спада несколько затянуто. По стоимости они тоже отличаются - IR2153 самая дешовая, а вот IR2155 сама дорогая.
Частота генератора, она частота преобразования (на 2 делить не нужно ) для IR2151 и IR2155 определяется по формулам, приведенным ниже, а частоту IR2153 можно определить из графика:

Для того, чтобы выяснить какими транзисторами можно управлять микросхемами IR2151, IR2153 и IR2155 следует знать параметры данных транзисторов. Наибольший интерес при состыковке микросхемы и силовых транзисторов представляет энергия затвора Qg, поскольку именно она будет влиять на мгновенные значения максимального тока драйверов микросхемы, а значит потребуется таблица с параметрами транзисторов. Здесь ОСОБОЕ внимание следует обратить на производителя, поскольку этот параметр у разных производителей отличается. Наиболее наглядно это видно на примере транзистора IRFP450.
Прекрасно понимаю, что для разового изготовления блока питания десяти-двадцати транзисторов все таки многовато, тем не менее на каждый тип транзистора повесил ссылку - обычно я покупаю там. Так что нажимайте, смотрите цены, сравнивайте с розницей и вероятностью купить левак. Разумеется я не утверждаю, что на Али только честные продавцы и весь товар наивысшего качества - жуликов везде полно. Однако если заказывать транзисторы, которые производятся непосредственно в Китае на дьрмо наскочить гораздо сложнее. И именно по этой причине я предпочитаю транзисторы STP и STW, причем даже не брезгую покупать с разборки, т.е. Б/У.

ПОПУЛЯРНЫЕ ТРАНЗИСТОРЫ ДЛЯ ИМПУЛЬСНЫХ ИСТОЧНИКОВ ПИТАНИЯ

НАИМЕН-НИЕ

НАПРЯЖЕНИЕ

МОЩНОСТЬ

ЕМКОСТЬ
ЗАТВОРА

Qg
(ПРОИЗ-ТЕЛЬ)

СЕТЕВЫЕ (220 V)

17...23nC (ST )

38...50nC (ST )

35...40nC (ST )

39...50nC (ST )

46nC (ST )

50...70nC (ST )

75nC (ST )

84nC (ST )

65nC (ST )

46nC (ST )

50...70nC (ST )

75nC (ST )

65nC (ST )

STP20NM60FP

54nC (ST )

150nC (IR)
75nC (ST )

150...200nC (IN)

252...320nC (IN)

87...117nC (ST )

I g = Q g / t on = 63 х 10 -9 / 120 х 10 –9 = 0,525 (A) (1)

При амплитуде импульсов управляющего напряжения на затворе Ug = 15 В сумма выходного сопротивления драйвера и сопротивления ограничительного резистора не должна превышать:

R max = U g / I g = 15 / 0,525 = 29 (Ом) (2)

Расчитаем выходное выходное сопротивление драйверного каскада для микросхемы IR2155:

R on = U cc / I max = 15V / 210mA = 71,43 ohms
R off = U cc / I max = 15V / 420mA = 33,71 ohms

Учитывая расчетное значение по формуле (2) Rmax = 29 Ом приходим к заключению, что с драйвером IR2155 заданное быстродействие транзистора IRF840 получить невозможно. Если в цепи затвора будет установлен резистор Rg = 22 Ом, время включении транзистора определим следующим образом:

RE on = R on + R gate, где RE - суммарное сопротивление, R R gate - сопротивление, установленное в цепь затвора силового транзистора = 71,43 + 22 = 93,43 ohms;
I on = U g / RE on, где I on - ток открытия, U g - величина управляющего напряжения затвора = 15 / 93,43 = 160mA;
t on = Q g / I on = 63 х 10-9 / 0,16 = 392nS
Время выключения можно расчитать используюя теже формулы:
RE off = R out + R gate, где RE - суммарное сопротивление, R out - выходное сопротивление драйвера, R gate - сопротивление, установленное в цепь затвора силового транзистора = 36,71 + 22 = 57,71 ohms;
I off = U g / RE off, где I off - ток открытия, U g - величина управляющего напряжения затвора = 15 / 58 = 259mA;
t off = Q g / I off = 63 х 10-9 / 0,26 = 242nS
К получившимся величинам необходимо добавить время собственного открытия - закрытия транзистора в результате чего реальное время t
on составит 392 + 40 = 432nS, а t off 242 + 80 = 322nS.
Теперь осталось убедится в том, что один силовой транзистор успеет полность закрыться до того, как второй начнет открываться. Для этого сложим t
on и t off получая 432 + 322 = 754 nS, т.е. 0,754 µS. Для чего это нужно? Дело в том, что у любой из микросхем, будь то IR2151, или IR2153, или IR2155 фиксированное значение DEAD TIME , которое составляет 1,2 µS и не зависит от частоты задающего генератора. В даташнике упоминается, что Deadtime (typ.) 1.2 µs, но там же приводится и сильно смущающий рисунок из которого напрашивается вывод, что DEAD TIME составляет 10% от длительности управляющего импульса:

Чтобы развеять сомнения была включена микросхема и подключен к ней двухканальный осцилограф:

Питание составляло 15 V, а частота получилась 96 кГц. Как видно из фотографии при развертке 1 µS длительность паузы составляет совсем немного больше одного деления, что как раз и соответсвует примерно 1,2 µS. Далее уменьшаем частоту и видим следующее:

Как видно из фото при частоте 47 кГц время паузы практически не изменилось, следовательно вывеска, гласящая, что Deadtime (typ.) 1.2 µs является истинной.
Поскольку микросхем уже работала нельзя было удержаться еще от одного эксперимента - снизить напряжение питания, чтобы убедиться, что частота генератора увеличится. В результате получилась следующая картинка:

Однако ожидания не оправдались - вместо увеличения частоты произошло ее уменьшение, причем менее чем на 2%, чем вообще можно принебречь и отметить, что микросхема IR2153 держит частоту достаточно стабильно - напряжение питания изменилось более чем на 30%. Так же следует отметить, что несколько увеличилось время паузы. Этот факт несколько радует - при уменьшении управляющего напряжения немного увелифивается время открытия - закрытия силовых транзисторов и увеличение паузы в данном случае будет весьма полезным.
Так же было выяснено, что UV DETECT прекрасно справляется со своей функцией - при дальнейшем снижении напряжения питания генератор останавливался, а при увеличии микросхема снова запускалась.
Теперь вернемся к нашей математике по результатам которой мы выснили, что при установленных в затворах резисторах на 22 Ома время закрытия и открытия у нас равно 0,754 µS для транзистора IRF840, что меньше паузы в 1,2 µS, дающую самой микросхемой.
Таким образом при микросхема IR2155 через резисторы 22 Ома вполне нормально сможет управлять IRF840, а вот IR2151 скорей всего прикажет долго жить, поскольку для закрытия - открытия транзисторов нам потребовался ток в 259 mA и 160 mA соответсвенно, а у нее максимальные значения составляют 210 mA и 100 ma. Конечно же можно увеличить сопротивления, установленные в затворы силовых транзисторов, но в этом случае существует риск выйти за пределы DEAD TIME . Чтобы не заниматься гаданием на кофейной гуще была составлена таблица в EXCEL, которую можно взять . Подразумевается, что напряжение питание микросхемы составляет 15 В.
Для снижения коммутационных помех и некоторого уменьшения времени закрывания силовых транзисторов в импульсных блоках питания используют шунтирование либо силового транзистора последовательно сединенными резистором и конденсатором, либо такой же цепочкой шунтируют сам силовой трансформатор. Данный узел называется снаббером. Резистор снабберной цепи выбирают номиналом в 5–10 раз больше сопротивления сток - исток полевого транзистора в открытом состоянии. Емкость конденсатора цепи определяется из выражения:
С = tdt/30 х R
где tdt - время паузы на переключения верхнего и нижнего транзисторов. Исходя из того, что продолжительность переходного процесса, равная 3RC, должна быть 10 раз меньше длительности значения мертвого времени tdt.
Демпфирование задерживает моменты открывания и закрывания полевого транзистора относительно перепадов управляющего напряжения на его затворе и уменьшает скорость изменения напряжения между стоком и затвором. В итоге пиковые значения импульсов затекающего тока меньше, а их длительность больше. Почти не изменяя времени включения, демпфирующая цепь заметно уменьшает время выключения полевого транзистора и ограничивает спектр создаваемых радиопомех.

С теорией немного разобрались, можно приступить и практическим схемам.
Самой простой схемой импульсного блока питания на IR2153 является электронный трансформатор с минимумом функций:

В схеме нет ни каких дополнительных функций, а вторичное двуполярное питание формируется двумя выпрямителями со средней точкой и парой сдвоенных диодов Шотки. Емкость конденсатора С3 определяется из расчета 1 мкФ емкости на 1 Вт нагрузки. Конденсаторы С7 и С8 равной емкости и распологаются в пределах от 1 мкФ до 2,2 мкФ. Мощность зависит от используемого сердечника и максимального тока силовых транзисторов и теоритически может достигать 1500 Вт. Однако это только ТЕОРИТИЧЕСКИ , исходя из того, что к трансформатору прилагается 155 В переменного напряжения, а максимальный ток STP10NK60Z достигает 10А. На практике же во всех даташитах указанно снижение максимального тока в зависимости от температуры кристалла транзистора и для транзистора STP10NK60Z максимальный ток составляет 10 А при температуре кристалла 25 град Цельсия. При температуре кристалла в 100 град Цельсия максимальный ток уже составляет 5,7 А и речь идет именно о температуре кристалла, а не теплоотводящего фланца и уж тем более о температуре радиатора.
Следовательно максимальную мощность следует выбирать исходя из максвимального тока транзистора деленного на 3, если это блок питания для усилителя мощности и деленного на 4, если это блок питания для постоянной нагрузки, например ламп накаливания.
Учитывая сказанное выше получаем, что для усилителя мощности можно получить импульсный блок питания мощностью 10 / 3 = 3,3А , 3,3А х 155В = 511Вт . Для постоянной нагрузки получаем блок питания 10 / 4 = 2,5 А , 2,5 А х 155В = 387Вт . И в том и в другом случае используется 100% КПД, чего в природе не бывает . Кроме этого, если исходить из того, что 1 мкФ емкости первичного питания на 1 Вт мощности нагрузки, то нам потребуется конденсатор, или конденсаторы емкостью 1500 мкФ, а такую емкость заряжать уже нужно через системы софт-старта.
Импульсный блок питания с защитой от перегрезки и софтстартом по вторичному питанию представлен на следующей схеме:

Прежде всего в данном блоке питания присутствует защита от перегрузки, выполненная на трансформаторе тока. Подробности о расчете трансформатора тока можно почитать . Однако в подавляющем большинстве случаев вполне достаточно ферритового кольца диаметром 12...16 мм, на котором в два провода мотается порядка 60...80 витков. Диаметр 0,1...0,15 мм. Затем начало одной обмотки осединяется с концов второй. Это и есть вторичная обмотка. Первичная обмотка содержит один-два, иногда удобней полтора витка.
Так же в схеме уменьшены номиналы резистор R4 и R6, чтобы расширить диапазон питающего первичного напряжения (180...240В). Чтобы не перегружать установленный в микросхему стабилитрон в схеме имеется отдельный стабилитрон мощностью 1,3 Вт на 15 В.
Кроме этого в блок питания введен софт-старт для вторичного питания, что позволило увеличить емкости фильтров вторичного питания до 1000 мкФ при выходном напряжении ±80 В. Без этой системы блок питания входил в защиту в момент включения. Принцип действия защиты основан на работе IR2153 на повышенной частоте в момент включения. Это вызывает потери в трансформаторе и он не способен отдать в нагрузку максимальную мощность. Как только началась генерация через делитель R8-R9 напряжение, подаваемое на трансформатор попадает на детектор VD5 и VD7 и начинается зарядка конденсатора С7. Как только напряжение станет досточным для открытия VT1 к частотозадающей цепочки микросхемы подключается С3 и микросхема выходит на рабочую частоту.
Так же введены дополнительные индуктивности по первичному и вторичному напряжениям. Индуктивность по первичному питанию уменьшает помехи, создаваемые блоком питания и уходящие в сеть 220В, а по вторичному - снижают ВЧ пульсации на нагрузке.
В данном варианте имеется еще два дополнительных вторичных питания. Первое предназначено для запитки компьтерного двенадцативольтового куллера, а второе - для питания предварительных каскадов усилителя мощности.
Еще один подвариант схемы - импульсный блок питания с однополярным выходным напряжением:

Разумеется, что вторичная обмотка расчитывает на то напряжение, которое необходимо. Блок питания можно запаять на той же плате не монтируюя элементы, которых на схеме нет.

Следующий вариант импульсного блока питания способен отдать в нагрузку порядка 1500 Вт и содержит системы мягкого старта как по первичному питанию, так и по вторичному, имеет защиту от перегрузки и напряжение для куллера принудительного охлаждения. Проблема управления мощными силовыми транзисторами решена использованием эмиттерных повторителей на транзистора VT1 и VT2, которые разряжают емкость затворов мощных транзисторов через себя:

Подобное форсирование закрытия силовых транзисторов позволяет использовать довольно мощные экземпляры, такие как IRFPS37N50A, SPW35N60C3, не говоря уже о IRFP360 и IRFP460.
В момент включения напряжение на диодный мост первичного питания подается через резистор R1, поскольку контакты реле К1 разомкнуты. Далее напряжение, через R5 подается на микросхему и через R11 и R12 на вывод обмотки реле. Однако напряжение увеличивается постепенно - С10 достаточно большой емкости. Со второй обмотки реле напряжение поступает на стабилитрон и тиристор VS2. Как только напряжение достигнет 13 В его уже будет достаточно, чтобы пройдя 12-ти вольтовый стабилитрон открыть VS2. Тут следует напомнить, что IR2155 стартует при напряжении питания примерно в 9 В, следовательно на момент открытитя VS2 через IR2155 уже будет генерировать управляющие импульсы, только в первичную обмотку они будут попадать через резистор R17 и конденсатор С14, поскольку вторая группа контактов реле К1 тоже разомкнута. Это существенно ограничит ток заряда конденсаторов фильтров вторичного питания. Как только тиристор VS2 откроется на обмотку реле будет подано напряжение и обе контактные группы замкнуться. Первая зашунтирует токоограничиваюй резистор R1, а вторая - R17 и С14.
На силовом трансформаторе имеет служебная обмотка и выпрямитель на диодах VD10 и VD11 с которых и будет питаться реле, а так же дополнительная подпитка микросхемы. R14 служит для ограничения тока вентилятора принудительного охлаждения.
Используемые тиристоры VS1 и VS2 - MCR100-8 или аналогичные в корпусе ТО-92
Ну и под занавес этой страницы еще одна схема все на той же IR2155, но на этот раз она будет выполнять роль стабилизатора напряжения:

Как и в предудущем варианте закрытие силовых транзисторов производится биполярами VT4 и VT5. Схема оснащена софтстартом вторичного напряжения на VT1. Старт производится от бортовой сети автомобиля а дальше питание осуществляется стабилизированным напряжением 15 В вормируемым диодами VD8, VD9, резистором R10 и стабилитроном VD6.
В данной схеме есть еще один довольно любопытный элемент - tC. Это защита от перегрева радиатора, которую можно использовать практически с любыми преобразователями. Однозначного названия найти не удалось, в простонародье это тепловой предохранитель самовостанавливающийся, в прайсах имеет обычно обозначение KSD301. Используется во многих бытовых электроприборах в качестве защитного или регулирующего температуру элемента, поскольку выпускаются с различной температурой срабатывания. Выглядит этот предохранитель так:

Как только температура радиатора достигнет предела отключения предохранителя управляющее напряжение с точки REM будет снято и преобразователь выключится. После снижение температуры на 5-10 градусов предохранитель востановится и подаст управляющее напряжение и преобразователь снова запустится. Этот же термопредохранитель, ну или термореле можно использовать и в сетевых блоках питания контролируя температуру радиатора и отключая питание, желательно низковольтное, идущее на микросхему - термореле так дольше проработает. Купить KSD301 можно .
VD4, VD5 - быстрые диоды из серии SF16, HER106 и т.д.
В схему можно ввести защиту от перегрузку, но во время ее разработки основной упор делался на миниатюризацию - даже узел софтстарта был под большим вопросом.
Изготовление моточных деталей и печатные платы описаны на следующих страницах статьи.

Ну и под занавес несколько схем импульсных блоков питания, найденых в интернете.
Схема №6 взята с сайта "ПАЯЛЬНИК":

В следующем блоке питания на самотактируемом драйвере IR2153 емкость вольтодобавочного конденсатора сведена до минимальной достаточности 0,22 мкф (С10). Питание микросхемы осуществляется с искуственной средней точки силового трансформатора, что не принципиально. Защиты от перегрузки нет, форма подаваемого в силовой трансформатор напряжения немного корретируется индуктивностью L1:

Подбирая схемы для этой статьи попалась и вот такая. Идея заключается в использовании двух IR2153 в мостовом преобразователе. Идея автора вполне понятна - выход RS триггера подается на вход Ct и по логике на выходах ведомой микросхемы должны образоваться управляющие импульсы противоположные по фазе.
Идея заинтргировала и был проден следственный эксперимент на тему проверки работоспособности. Получить устойчивые управляющие импульсы на выходах IC2 не удалось - либо работал верхний драйвер, либо нижний. Кроме этого сдивагалсь фаза пауза DEAD TIME , на одной микросхеме отностительно другой, что существенно снизит КПД и от идеи были вынуждены отказаться.

Отличительная черта следующего блока питания на IR2153 заключается в том, что если он и будет работать, то работа эта сродни пороховой бочке. Прежде всего бросилась в глаза дополнительная обмотка на силовом трансформаторе для питания самой IR2153. Однако после диодов D3 и D6 нет токоограничивающего резистора, а это означает, что пятнадцативольтовый стабилитрон, находящийся внутри микросхемы будет ОЧЕНЬ сильно нагружен. Что произойдет при его перегреве и тепловом пробое можно только гадать.
Защита от перегрузки на VT3 шунтирует время задающий конденсатор С13, что вполне приемелемо.

Последний приемлемый вариант схемы истоника питания на IR2153 не представляет собой ни чего уникального. Правда автор зачем то уж слишком уменьшил сопротивление резисторов в затворах силовых транзисторов и установил стабилитроны D2 и D3, назначение которых весьма не понятно. Кроме этого емкость С11 слишком мала, хотя возможно речь идет о резонансном преобразователе.

Есть еще один вариант импульсного блока питания с использованием IR2155 и именно для управления мостовым преобразвателем. Но там микросхема управляет силовыми транзисторами через дополнительный драйвер и согласующий трансформатор и речь идет об индукционной плавке металлов, поэтому этот вариант заслуживает отдельной страницы, а всем кто понял хотя бы половину из прочитанного стоит переходить на страницу с ПЕЧАТНЫМИ ПЛАТАМИ .

ВИДЕОИНСТРУКЦИЯ ПО САМОСТОЯТЕЛЬНОЙ СБОРКЕ
ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ НА БАЗЕ IR2153 ИЛИ IR2155

Несколько слов об изготовлении импульсных трансформаторов:

Как определить количество витков не зная марку феррита:


Неплохая и интересная схема качественного зарядного устройства на основе микросхемы IR2153, самотактируемого полумостового драйвера, которая довольно часто используется в электронных балластах энергосберегающих ламп.

Схема работает от сети переменного напряжения 220 Вольт, ее выходная мощность около 250 ватт, а это около 20 Ампер при 14 Вольтах выходного напряжения, чего вполне достаточно для зарядки автомобильных аккумуляторов.

На входе имеется сетевой фильтр, и защита от бросков напряжения и перегруза блока питания. Термистор защищает ключи во время начального момента включения схемы в сеть 220 Вольт. Затем сетевое напряжение выпрямляется диодным мостом.

Через ограничительное сопротивление 47 кОм напряжение проходит на микросхему генератора. Импульсы определенной частоты следуют на затворы высоковольтных ключей, которые срабатывая пропуская напряжение в сетевую обмотку трансформатора. На вторичной обмотке мы имеем требуемое для заряда аккумуляторов напряжение.

Выходное напряжение ЗУ зависит от количества витков во вторичной обмотке и рабочей частоты генератора. Но частоту не следует поднимать выше 80кГц, оптимально 50-60кГц.

Высоковольтные ключи IRF740 или IRF840. Меняя емкость конденсаторов во входной цепи можно увеличить или уменьшить выходную мощность зарядного устройства, при необходимости можно достичь 600 ваттной мощности. Но нужны конденсаторы 680 мкФ и мощный диодного мост.

Трансформатор можно взять готовый из компьютерного блока питания. А можно и его сделать самому. Первичная обмотка содержит 40 витков провода диаметром 0,8 мм, затем накладываем слой изоляции наматываем вторичную обмотку - где то 3,5-4 витка из довольно толстого провода или использовать многожильный провод.

После выпрямителя в схеме установлен фильтрующий конденсатор, емкость не более 2000 мкФ.

На выходе необходимо поставить импульсные диоды с током не менее 10-30А, обычные сразу сгорят.

Внимание схема ЗУ не имеет защиты от короткого замыкания и сразу выйдет из строя, если такое произойдет.

Еще один вариант схемы зарядного устройства на микросхеме IR2153


Диодный мост состоит из любых выпрямительных диодов с током не менее 2А, можно и больше и с обратным напряжением 400 Вольт, можно использовать готовый диодный мост из старого компьютерного блока питания в нем обратное напряжение 600 Вольт при токе 6 А.

Для обеспечения требуемых параметров питания микросхемы необходимо взять сопротивление 45-55 кОм с мощностью 2 ватт, если таких не можете найти, соедините последовательно несколько маломощных резисторов.

У каждого автолюбителя есть для АКБ 12 В. Все эти старые зарядки с различным успехом работают и выполняют свои функции, но есть у них общий недостаток - слишком большие габариты и вес. Это не удивительно, ведь один только силовой трансформатор на 200 ватт может весить до 5 кг. Поэтому и задумал собрать импульсное зарядное для автоаккумулятора. На просторах инета, точнее на форуме Kazus нашел схему этого ЗУ.

Схема принципиальная ЗУ - клик для увеличения размера

Собрал, работает прекрасно! Заряжал автомобильный аккумулятор, настроил зарядник на 14.8 в и на ток около 6 А, перезаряда или недозаряда нет, при достижении и напряжения на клемах аккумулятора 14.8 в, ток зарядки падает автоматически. Также заряжал гелиевый свинцовый аккумулятор от бесперебойника ПК - нормально. Замыканий на выходе данный зарядник не боится. А вот от переполюсации надо защиту делать, сам сделал на реле.

Печатная плата, даташиты на некоторые радиоэлементы и другие файлы смотрите на форуме.

В общем всем советую его сделать, так как у этого ЗУ много преимуществ: малые размеры, база радиоэлементов не дефицит, многое можно купить и в том числе готовый импульсный трансформатор. Сам его приобрёл в интернет магазине - прислали быстро и дёшево. Оговорюсь сразу, вместо диода Шоттки VD6 (термостабилизация), поставил просто сопротивление на 100 Ом, зарядное и с ним работает прекрасно! Схему собрал и испытал: Demo .

Недавно под заказ попросили сделать высоковольтный генератор. Сейчас некоторые спросят себя - какое отношение имеет высоковольтный генератор к зарядному устройству? Должен заметить, что один из самых простых импульсных зарядников можно построить на базе приведенной схемы и в качестве наглядной демонстрации я решил собрать

инвертор на макете и изучить все основные достоинства и недостатки данного инвертора.

Автоэлектрика. Мощное импульсное зарядное устройство для АКБ.

Ранее, я уже выкладывал статью про зарядное устройство на основе полумостового инвертора на драйвере IR2153, в этой статье тот же драйвер, только чуть иная схематика, без использования емкостей полумоста, так, как с ними было много вопросов и многие просили схему без конденсаторов.

Но без конденсаторов и тут не обошлось, он нужен для сглаживания помех и бросков после сетевого выпрямителя, емкость я подобрал 220 мкФ, но можно и меньше - от 47 мкФ, напряжение 450 Вольт в моем случае, но можно ограничиться 330-400 Вольт.



Диодный мост можно собрать из любых выпрямительных диодов с током не менее 2А (желательно в районе 4-6А и более) и с обратным напряжением не менее 400 Вольт, в моем случае был использован готовый диодный мост из компьютерного блока питания, обратное напряжение 600 Вольт при токе 6 Ампер - то, что надо!


Напомню, что это самый простой вариант подключения микросхемы и самый простой ИБП от сети 220 Вольт, который может вообще существовать, если хотите долговечное зарядное устройство, то схему придется доработать.

Для обеспечения нужных параметров питания микросхемы использован резистор 45-55кОм с мощностью 2 ватт, если таковых нет, то можно подключить последовательно 2-3 резисторов, конечное сопротивление которых, будет в пределе указанного.


Диод от 1-ой к 8-ой ножке микросхемы должен быть с током не менее 1 А и с обратным напряжением не ниже 300 Вольт, в моем случае был использован быстрый диод на 1000 Вольт 3 Ампер, но он не критичен, можно использовать диоды HER107, HER207, HER307, FR207 (на крайняк), UF4007 и т.п.

Полевые транзисторы нужны высоковольтные, типа IRF840 или IRF740. Трансформатор был взят готовый, от компьютерного блока питания. На входе питания стоят два пленочных конденсатора до и после дросселя, дроссель взят готовый, он имеет две одинаковые обмотки (независимые друг от друга) каждая по 15 витков провода 0,7мм.


Термистор, предохранитель, резистор на входе - тут только для защиты схемы от резких бросков напряжения, не советую их убрать, но схема и без них прекрасно работает. Выпрямляется выходное напряжение мощным сдвоенным диодом, который тоже можно найти в компьютерном блоке питания.

На выходах трансформатора образуется разное напряжение (3,3/5/12Вольт). Шину 12 Вольт найти очень легко, обычно это два вывода с одного края, нужную обмотку найти легко, если использовать галогенную лампу на 12 Вольт, судя по свечению можно сделать вывод о напряжении.

Готовый блок можно дополнить регулятором мощности и защитой от перегруза и короткого замыкания и получить полноценное зарядное устройство для автомобильного аккумулятора, напомню, что ток с шины 12 Вольт доходит до 8-12 Ампер, зависит от конкретного типа трансформатора.

error: