Как устроена и работает пожарная сигнализация. Датчик пожарный или тепловой извещатель: установка, модели, цена Схема контроля датчика дыма

Датчик пожарной сигнализации это такое устройство которое подает сигнал в случае пожара и сильного задымления. Рассмотрим несколько вариантов самодельных схем

Датчик собран на двух микросхемах DA1 К157УД2, DD1 К561КТЗ. DA1 - это операционные усилители, включенные по схеме компараторов. На DA1.1 выполнен термодатчик, терморезистор R6 можно использовать почти любой с сопротивлением от 1 до 100 кОм. Сопротивлением R2 устанавливается порог срабатывания компаратора.

С ростом температуры сопротивление терморезистора снижается и напряжение на неинвертирующем входе второго вывода компаратора увеличивается. Как только оно станет выше уровня напряжения на инвертирующем третьем входе, выходное напряжение возрастет до уровня напряжения питания.
На компараторе DA1.2 выполнен датчик задымленности. Сопротивление R3 задает ток протекающий через светодиод VD1. Световой поток оказывает воздействие на фотодиод VD2, который вместе с сопротивлением R8 составляют делитель, напряжение с которого идет на инвертирующий вход компаратора DA1.2. Делитель напряжения на резисторах R4, R5 задает напряжение на неинвертирующем входе компаратора. При появлении дыма в случае пожара фотодиод будет освещаться более слабым световым потоком, его сопротивление увеличивается, напряжение на инвертирующем входе снижается и становится ниже напряжения на неинвертирующем входе. Поэтому разность потенциалов на выходе DA1.2 практически скачкообразно изменится до уровня напряжения питания.
Цепочки R9, R10, С1 и R11, R12, С2 используются для защиты от помех, которые могут появиться на входе компаратора и переключить его. Емкость С4 фильтрующая по питанию, чтоб не возбуждалась ИМС DA1. Выходы компараторов DA1.1 и DA1.2 через диоды VD3, VD4 подключены на нагрузочное сопротивление R15, Для связи датчика с основным блоком сигнализации имеется развязка на ключевой ИМС DD1. Все ее четыре ключа включены параллельно. При появлении напряжения питания на выходе любого из компараторов, начнется заряд конденсатор С3, который защищает схему от кратковременных помех на входе или по цепи питания. Когда С3 зарядится до заданного уровня, ключи DD1 начнут пропускать ток, и на контакте <тревога> появится разность потенциалов. Оно и будет говорить о критической ситуации на охраняемом объекте.
Температурный датчик настраивают следующим образом. Нагревают терморезистор до 45 °С и подстройкой сопротивления R2 добиваются того, чтобы загорелся VD5, при понижении температуры светодиод должен гаснуть. Датчик дыма настраивают подстройкой сопротивления R5 так, чтобы он срабатывал только при появлении дыма. При нечетком срабатывании датчика, требуется точнее подобрать резистор R8 под конкретный фотодиод.

Особенностью данной схемы является , которая по своему внутреннему составу является готовым температурным датчиком.

Выход датчика это выход с открытым стоком, который рассчитан на протекание через него тока до 4 мА. При достижении запрограммированной температуры любого из трех датчиков DS1821 уровня TH, на сопротивлении R1 появится падение напряжение, которое отопрет тиристор и включит реле K1. Контакты реле коммутируют любое сигнальное устройство, например .

Схема реагирует на резкое падения освещения датчика вследствии задымления издавая при этом сигнал тревоги. Схема не сработает на постепенное изменения яркости, что позволяет избегать ложного срабатывания. Чтобы Звуковой сигнал звучит около 10 секунд, но это время можно изменить с помощью регулировки сопротивления резистора R5.


В роли источника света необходимо использовать и естественное освещение, но будет лучше, если на датчик света подать яркий луч света из китайской лазерной указки.Необходимая чувствительность регулируется резистором R1. В роли непосредственно самого датчик выступает фоторезистор, сопротивление которого имеет маленькое значение при освещении, и высокое при затемнении.

Датчики дыма, предназначены для обнаружения возгораний, сопровождающихся появлением дыма в помещениях. На данный момент, это самый распространенный вид датчиков пожара устанавливаемых в помещениях. Характеризуется высокой обнаружительной способностью, на ранней стадии возгорания.

Конструктивное исполнение

Датчик дыма, состоит из корпуса, в нутрии которого расположена дымовая камера с оптической парой, и электронный блок обработки сигнала, а так же имеется съемная розетка.
Розетку закрепляют на потолке, подсоединяют к ней провода, вставляют в неё датчик и поворачивая по часовой стрелке до упора, фиксируют датчик в розетке.

Как работает пожарный датчик

Принцип действия датчика, основан на контроле отраженного от частиц дыма инфракрасного излучения. При концентрации дыма в нутрии камеры, ИК импульсы посланные излучателем, отражаясь от частиц дыма, попадают на фотоприемник, далее они усиливаются и подаются на счетчик, который отсчитывает полученные импульсы и при превышении установленного порога выдается сигнал «Пожар». При этом пожарный датчик включает светодиодный индикатор, и «нагружает» шлейф прибора резистором, порядка 500 Ом, что приводит к срабатыванию шлейфа. Что бы перевести датчик дыма в исходное состояние, нужно снять с него питание на время не менее 3 сек. Для тестирования пожарного датчика на корпусе, может находится кнопка, или же отверстие в которое нужно ввести стержень имитирующий появление дыма в камере.

Установка пожарных датчиков

Датчики дыма, устанавливают на потолке, либо в меж потолочном пространстве, между основным и подвесным потолком. Количество датчиков дыма, определяется исходя из площади помещения и высоты потолка. При высоте потолка до 3,5 метров, один датчик дыма, может контролировать объем до 80 кв./м. площади. Но по правилам, в любом даже самом маленьком помещении не должно быть менее двух датчиков.
Расстояние между датчиками не должно быть более 9 м, а расстояние до стены не более 4,5м. Это правило, справедливо при высоте потолка до 3,5 метров, при условии, что на потолке нет элементов (балки, элементы декора и др. с перепадом более 40 см.) которые могут препятствовать перетеканию дыма, а помещение имеет правильную, близкую к прямоугольнику форму без «аппендицитов». Если помещение не соответствует описанным условиям, количество датчиков увеличивают.

Подключение пожарных датчиков

Пороговые датчики дыма, с двухпроводной схемой включения серии ИП212 произведенные в России, имеют универсальную схему подключения.
У всех датчиков имеется колодка с 4 контактами.

1 контакт – Выносной индикатор (этот вывод, обычно не задействуют)
2 контакт – Положительный вывод питания +
3 контакт – Отрицательный вывод питания –
4 контакт – Так же отрицательный вывод, служащий для контроля наличия датчика в розетке, если датчик вынуть, цепь между 3 и 4 контактом размыкается, и формируется сигнал «Неисправность».
Подключение пожарных датчиков производится дух жильным не горючим кабелем, например КСВВнг(А)-LS 2x0.5, последовательно от датчика к датчику, в колодке самого дальнего датчика, нужно установить оконечный элемент (резистор).
(Для некоторых приборов, требуется устанавливать резистор в каждый датчик + в самом последнем оконечный резистор).
Соединение в без винтовой колодке ИП212-45 производится следующим образом. Жила зачищается на 1,5 см. и вставляется в отверстие. За тем отверткой нужно, с усилием толкнуть флажок в сторону клеммы до щелчка. При этом жила фиксируется (зажимается в клемме).

Особенности пожарных датчиков

На данный момент подавляющее большинство датчиков, построено с применением оптико электронной схемы обнаружения дыма, хотя этот принцип и имеет существенные недостатки. Самым главным недостатком датчиков построенных по такой схеме, является то, что пыль попавшая в камеру, воспринимается датчиком как дым, и датчик выдает ложную тревогу, по этому данные датчики дыма требуют частого проведения техобслуживания. Для того, что бы избавится от пыли, нужно продуть камеру датчика, используя пылесос (работающий на выдув) или компрессор не реже одного раза в пол года, а если помещение пыльное то и чаще. В настоящее время на рынке есть датчики дыма, которые используют микропроцессорный анализ сигнала, имеют функцию компенсации запыленности камеры, а так же режим само тестирования через определенный интервал времени.

Характеристики и фото датчиков, можно найти в документе "Датчики пожара", в разделе

При монтаже мы применяем определённую схему подключения пожарных датчиков. В данной статье как раз пойдёт речь об этом. Различные схемы подключения имеют пожарные датчики. Стоит помнить при планировании схемы, что шлейф сигнализации ограничен по количеству подключения на него пожарных извещателей. О количестве подключаемых датчиков на один шлейф можно узнать из описания контрольного прибора. Ручные и дымовые пожарные извещатели содержат четыре вывода. 3 и 4 замкнуты на схеме. Такое исполнение даёт возможность контролировать пожарный ШС. Если конкретней, то подключив дымовой датчик с помощью 3 и 4 вывода на контрольном приборе будет формироваться сигнал "Неисправность" в случае снятия извещателя.

При подключении стоит помнить, что выводы пожарных датчиков имеют разную полярность. Вывод два - это часто плюс, а вывод три и четыре - минус, первый же вывод используют при подключении конечного или контрольного светодиода. Но зачастую он не используется.

Если заглянуть в схему подключения, то можно увидеть три сопротивления, Rок, Rбал. и Rдоп. Номиналы резисторов можно прочесть в руководстве от контрольного прибора и обычно поставляется уже в комплекте с ним. Rбал. по своим функциям нужен для того же, для чего и Rдоп., применяется в дымовых датчиках и ручных. В комплект контрольного прибора обычно не входят. Покупаются отдельно.

При нормальной работе тепловые датчики обычно коротко замкнуты, стало быть наше сопротивление Rбал в схеме не участвует до тех пор, пока не произойдёт сработка. Только после этого к цепи прибавится наше сопротивление. Это нужно для того, чтобы создавать сигнал "Тревога" после сработки одного или двух датчиков. Когда мы применяем подключение при котором сигнал "Тревога" формируется от двух датчиков, то при сработке одного на контрольный прибор поступает сигнал "Внимание". Данные подключения применяются как для дымовых, так и для тепловых датчиков.

Подключая дымовые датчики и используя в схеме Rдоп, "Тревога" будет посылаться на контрольный прибор только после срабатывания двух датчиков. Когда сработает первый датчик, на контрольном приборе будет сигнал "Внимание".

Если в схеме не применять резистор Rдоп, сигнал "Тревога" будет отправлен на контрольный прибор сразу, как только сработает датчик.

Ручные же извещатели подключаются только в одном режиме, то есть чтобы при сработке одного устройства в системе сразу появлялся сигнал "Тревога". Это нужно для немедленного оповещения о возникновении пожара.

На промышленных объектах в основном используются для сигнализации о пожаре тепловые датчики (они наиболее дешевы). Особенность их устройства такова, что они подают сигнал тревоги, когда охраняемое помещение уже сгорело.

Наиболее надежны, по мнению пожарных, считаются датчики, срабатывающие на дым, однако они далеко не всем по карману.

Рис 1. Принципиальная схема пожарного датчика дыма

Один из вариантов выполнения датчика дыма приведен на рис. 1. Cхема состоит из генератора (на элементах микросхемы DD1.1, DD1.2, С1, R1, R2), формирователя коротких импульсов (на DD1.3 и С2, R3), усилителя (VT1) и излучателя (HL1) ИК-импульсов, а также компаратора (DD2) и ключа на транзисторе (VT2). При приеме ИК-импульсов фотодиодом HL2 срабатывает компаратор и своим выходом разряжает конденсатор С4. Как только прохождение импульсов нарушится, конденсатор зарядится через резистор R9 в течение 1 секунды до напряжения питания, и начнет работать элемент D1.4. Он пропускает импульсы генератора на коммутатор тока VT2. Применение светодиода HL3 не является необходимым, но при его наличии удобно контролировать момент срабатывания датчика.

Рис 2. Конструкция датчика дыма

Конструкция датчика (рис. 2) имеет рабочую зону, при попадании в которую дыма ослабляется прохождение ИК-импульсов, а если не смогли пройти несколько импульсов подряд — срабатывает датчик (что обеспечивает помехоустойчивость схемы). При этом в соединительной линии появляются импульсы тока, которые и выделяет схема контроля, приведенная на рис. 3.

Рис 3. Схема контроля

Датчиков дыма к одному охранному шлейфу можно подключать (параллельно) много. При настройке схемы контроля резистором R14 устанавливаем транзисторы так, чтобы VT3 и VT4 находились в запертом состоянии (светодиод HL4 не светится).

Один датчик дыма в режиме ОХРАНА потребляет ток не более 3 мА и проверен при работе в диапазоне температур от -40 до +50 °С.

Выход схемы контроля (коллектор VT4) может подключаться к системе охраны непосредственно вместо датчика.

При использовании нескольких датчиков, одновременно установленных в разных местах, схему можно дополнить индикатором номера сработавшего датчика дыма. Для этого нужно, чтобы частоты генераторов (зависит от С1 и R2) отличались друг от друга, а воспользовавшись цифровым индикатором частоты, например предложенным М. Назаровым ("Радио", N 3, 1984, стр. 29—30), легко будет определить место возгорания. При этом отпадает необходимость вести охранные шлейфы отдельно до каждого датчика, что значительно упростит разводку проводов и снизит их расход.

Транзисторы VT1 и VT2 могут быть заменены на КТ814. ИК-диоды подойдут многих других типов, но при этом может потребоваться подбор номинала резистора R6.

Конденсаторы использованы С1, С2, С4, С5 типа К10-17а, СЗ — К53- 18-16В, С6 - К50-6-16В. Резистор R14 типа СП5-2, остальные типа С2-23.

Датчик дыма целесообразно устанавливать в помещениях, где хранятся легко воспламеняющиеся предметы, а размещать в местах, где проходит поток воздуха, например вблизи вентиляционного отверстия, - в этом случае возгорание будет обнаружено раньше.

Схема может найти и другие применения, например в качестве безконтактного датчика для охранной сигнализации или устройств автоматики.


C этой схемой также часто просматривают:

Еще в древние времена люди использовали передачу информации о начале возникновения каких-то событий на расстояние в виде световых сигналов или хорошо слышимых звуков, когда на возвышенностях разжигали костры либо звонили в колокола.

Жизнь современного человека связана с эксплуатацией большого количества разнообразной техники, работу которой часто отслеживают дистанционно с помощью различных видов сигнализации. Среди них сведениям о начале возникновения пожара на ответственных промышленных объектах и внутри многоэтажных зданий с большим количеством людей отводится важнейшее значение.

Назначение пожарной сигнализации

Ее основная задача сводится к тому, чтобы при первых признаках возгорания оперативно передать информацию в дежурную службу, способную быстро прибыть на место происшествия и принять экстренные меры по тушению возникшего очага пламени, предотвратить его распространение.

Дополнительными задачами систем пожарной сигнализации (СПС) могут быть:

    дистанционное задействование заранее расположенных средств тушения пожара — различного вида огнетушителей, созданных применительно к конкретным условиям производства или объекта;

    обеспечение разблокировки систем контроля управления доступом для облегчения массовой эвакуации людей из опасного места;

    передача информации на дополнительные пункты диспетчерского управления;

    другие функции.

Состав пожарной сигнализации

Система пожарной сигнализации рассматривается как специфическая электрическая система управления, схема которой состоит из различных частей:

    специальных датчиков — извещателей, сообщающих о начале возгорания;

    каналов передачи сигналов о срабатывании датчика;

    пультов контроля, приема (ПКП) и отображения информации для оперативного персонала;

    систем оповещения людей.

Как устроены и работают пожарные извещатели

Оценить возникновение первых признаков возгорания можно по появлению дыма, быстрому нагреву окружающей среды или сильной вспышке света. Эти три фактора заложены в принцип работы различных технических устройств.

В промышленном и жилом секторе наибольшее распространение получили четыре вида датчиков, работающих на различных принципах:

1. обнаружения начала распространения дыма — дымовые извещатели;

2. появления резкого нагрева внутри помещения — тепловые;

3. выделения электромагнитных волн оптического диапазона видимого, ультрафиолетового либо инфракрасного спектра — пламени;

4. одновременного воздействия тепла и дыма, а часто и в комплексе с учетом появления яркого света — комбинированные.

Датчики пожарной сигнализации могут только отслеживать состояние контролируемого параметра или реагировать на его изменение выдачей сигнала во внешнюю систему. По этому принципу они относятся не только к пассивным, но и к активным устройствам. Извещатели могут создаваться для контроля определенной местной зоны или протяженного, вытянутого пространства. Последние конструкции называют линейными.

Принцип работы дымовых извещателей

Датчик размещают на потолке в том месте, куда поднимается и начинает концентрироваться дым при начале возгорания.

Конструктивно дымовой извещатель состоит из:

1. разъемного корпуса;

2. электронной платы;

3. оптической системы.

Эти детали по отдельности собираются на автоматизированных технологических линиях и после прохождения различных тестов и проверок собираются вручную в единый модуль.

Работа датчика основана на фиксации момента появления дыма в его корпусе за счет срабатывания оптической системы, в состав которой входят:

    Испускающий строго направленный луч света;

    Который преобразует падающий на него световой поток в электрический сигнал.

Конструктивно световой луч от источника направлен немного в сторону от фотоэлемента. При нормальных условиях эксплуатации с обычным состоянием воздуха в помещении свет не может дойти до поверхности фотоэлемента, как показано на картинке №1.

В случае появления дыма в корпусе датчика начинается отражение световых лучей во все стороны. Они попадают на фотоэлемент, и он срабатывает. Этот момент контролирует электронная схема. Она формирует информационную команду, передает ее по каналам связи на приемное устройство пожарной сигнализации.

Если в полость датчика станет проникать водяной пар или газы, отклоняющие световой поток, то фотоэлемент тоже сработает, а логическая схема выдаст ложную информацию о возникновении пожара.

По этой причине датчики дыма не устанавливают в тех местах, где они способны неправильно срабатывать. К ним относят кухни, ванные, душевые. Монтаж датчиков дыма в местах, где собираются курильщики, тоже вызовет частую и ложную их работу.

Подобный пожарный извещатель не среагирует на повышение температуры и вспышку света открытого огня. Поэтому такие модули устанавливают в тех помещениях, где возгорание связано с задымлением среды от температурного повреждения изоляции электрических проводов, тканей, других подобных материалов.

Их устанавливают в местах с большим количеством работающего электрооборудования на промышленных производствах, складах хранения материальных средств, электрических подстанциях и лабораториях.

Принцип работы тепловых извещателей

Их тоже располагают на потолке, куда поднимается тепло, выделяемое открытым огнем. Они могут работать по фактору:

1. достижения максимально допустимого значения нагрева;

2. скорости возрастания температуры.

Пороговые устройства

Датчики этого типа стали создаваться самыми первыми. Вначале они работали за счет вытекания легкорасплавляемого сплава из предохранителя, установленного в месте контакта двух проводников. За счет этого при нагреве окружающей среды до 60÷70 градусов происходил разрыв электрической цепи и выдавался сигнал о начале пожара.

Принцип работы одной из подобных конструкций одноразового, невосстанавливаемого теплового извещателя типа ИП-104 показан на картинке.

Внутри корпуса размещены пружинные контакты, которые отводятся друг от друга силами механического натяжения, а удерживаются за счет сплава Вуда, состоящего из легкоплавких металлов. Датчик срабатывает при нагреве до 68 градусов, а разрыв цепи обеспечивают взведенные пружины.

Подобные конструкции постоянно усовершенствуются. Сейчас они выпускаются с заменяемыми плавками вставками или элементами, управляемыми на расстоянии. Логическая схема может быть выполнена на разных принципах и электронных компонентах.

Интегральные извещатели


В основу работы датчика положены замеры скорости изменения электрического сопротивления металлов при их нагреве.

На клеммы теплового контрольного элемента от источника питания подается стабилизированное напряжение. Под его действием в электрической цепи через проволочный резистор и измерительное устройство протекает ток, определяемый по закону Ома. Его величина строго зависит от сопротивления.

Под воздействием обычной комнатной температуры его значение остается практически неизменным. При стабилизированном напряжении ток тоже не меняется.

Когда на контрольный элемент начинает действовать температура открытого огня от появившегося пламени, то сопротивление датчика начинает быстро возрастать и по такому же закону начинает меняться ток. Скорость его отклонения от установившегося ранее значения фиксируется электронной схемой, которая обычно настроена на возрастание 5 градусов в секунду.

При достижении критической величины скорости нагрева логическая схема датчика отправляет по каналам связи сигнал на приемный модуль.

В этой схеме отсутствуют устройства, реагирующие на дым, и она на него не сработает.

Подобные конструкции наиболее эффективно работают на пожарах, вызванных воспламенением горючих жидкостей из нефтепродуктов, углеродного топлива, пожароопасных твердых материалов. Их устанавливают на местах хранения емкостей с легковоспламеняющимися жидкостями, складах строительных материалов и в подобных промышленных зданиях.

Принцип работы извещателей пламени


Довольно многочисленный класс этих датчиков реагирует на открытый огонь или тлеющий очаг пожара без возникновения дыма.

Чувствительный фотоэлемент фиксирует появление одного из спектров оптических волн или его полный диапазон. При этом конструкция получается довольно сложная и дорогостоящая. По этой причине их не применяют в жилых домах, а используют на предприятиях нефтяной и газовой промышленности.

Наиболее простые модели этого типа способны срабатывать от воздействия сварочной дуги, света яркого солнца, люминесцентных ламп, электромагнитных помех оптического спектра. Для устранения ложной работы могут использоваться различные фильтры.

Принцип работы комбинированных извещателей

Все конструкции пожарных датчиков, работающих по какому-то одному признаку возгорания, могут ложно сработать. Чтобы расширить предел достоверности передаваемой информации создают устройства, сразу сочетающие в себе возможности дымовых и тепловых моделей, или дополненные еще функцией реакции на пламя.

Для этого в них включают сразу инфракрасный, тепловой и оптический сенсор. Они могут в большинстве случаев настраиваться на срабатывание от каждого входного параметра отдельно или только при их одновременном появлении.

Для ответственных промышленных помещений существуют четырехканальные комбинированные извещатели, учитывающие дополнительно появление угарного газа.

Принцип работы ручных пожарных извещателей

Самые простые конструкции из обыкновенной кнопки с пружинным самовозратом используются для ручного оповещения оперативных работников о начале возгорания. Для этого персоналу, заметившему начало признаков появления огня, достаточно открыть защитную крышку и нажать на кнопку.

При этом действии замыкаются контакты схемы и включается оповещение «Пожарная тревога». Когда кнопка будет отпущена, то сигнал не прерывается: цепочка его питания автоматически ставится на самоблокировку. Предупреждение людей о пожарной опасности будет происходить до тех пор, пока ответственный работник специальным ключом не произведет ее разблокировку.

Подобные ручные датчики монтируют во всех помещениях, где собираются массы людей (магазины, больницы, кинотеатры, промышленные объекты) на высоте полтора метра и на расстоянии между ними до 50 м.

Краткие выводы по выбору пожарных извещателей

Конструкция и принцип работы датчика должны максимально соответствовать условиям, обеспечивающим пожарную безопасность контролируемого помещения.

В больших промышленных зданиях с разным оборудованием не всегда целесообразно использовать однотипные марки извещателей, а их количество даже при ограниченных финансовых возможностях должно перекрывать все опасные зоны возгорания в соответствии с требованиями нормативных документов.

Каналы передачи сигналов о срабатывании извещателей

После того как типы и количество пожарных датчиков определены для установки в помещениях, их подключают проводами в шлейфы, которые собирают на приемно-контрольный прибор в оперативной службе безопасности.

Для шлейфов выбирают провода с медными жилами и прокладывают их с возможностью обеспечения контроля технического состояния. К ним СНИП и ГОСТ предъявляют требования по способам раздельной прокладки с другими кабельными магистралями и по обеспечению защиты от механических повреждений.

Приборы приема и контроля сигналов

Пульты ПКП создаются производителями разной степени сложности для профессионального, полупрофессионального или бытового использования.

Профессиональные устройства предназначены для решения не только вопросов пожарной безопасности, но и охраны объектов. Они:

    отслеживают состояние многолучевых схем и способны одновременно обрабатывать аналоговые и цифровые сигналы;

    допускают каскадное объединение в блоки для создания сложной иерархии схем контроля;

    подключаются к компьютеру пожарно-охранной службы;

    фиксируют по времени и передают всю информацию, происходящую на контролируемом объекте;

    используются только на ответственных промышленных объектах.

Полупрофессиональные устройства работают с цифровыми сигналами. Их изготавливают в едином корпусе, объединяющем:

    блок питания от стационарной электрической сети;

    резервный источник электроснабжения — мощную аккумуляторную батарею, способную обеспечивать автономную работу системы от нескольких часов до суток;

    электронный блок управления;

    процессор.

На ответственных объектах процессор защищают от несанкционированного доступа размещением в труднодоступных местах с выполнением полного экранирования, предотвращающего от попыток взлома специальным дистанционным сканером, и сложным кодированием обрабатываемой и передаваемой информации.

Такие модели способны обрабатывать сигналы от двухсот пятидесяти датчиков. Они уже могут использоваться в жилом секторе.

Многолучевые бытовые ПКП

Создаются для работы в частном домовладении с различными надворными хозяйственными постройками.

Способны обрабатывать сигналы от электрических контактов герконов или электронных схем, а также информацию, поступающую по беспроводным каналам от двух-восьми различных источников.

Простейшие квартирные ПКП

Их представляют наиболее простые модели, работающие в одноканальном режиме, которого вполне достаточно для владельца квартиры. Даже такой прибор способен передавать информацию о срабатывании датчиков на мобильный телефон хозяина в виде СМС.

Пульты ПКП, предназначенные для бытовых целей, сопровождаются подробной технической документацией производителя с инструкциями и схемами подключения. Для них введен евростандарт EN54.

Системы оповещения о пожаре

В многолюдных зданиях используется световая и звуковая система предупреждения персонала и посетителей оповещением команды «Тревога». Одновременно происходит передача информации руководству предприятия и дежурным службам для принятия экстренных мер.

Пример распределения различных приборов пожарной сигнализации и организации системы оповещения показан на картинке.

Как и все технические приборы средства пожарной сигнализации требуют периодического контроля и проверок работоспособности, выполнения комплекса мер обслуживания, настроек, корректировок. При этом необходимо соблюдать правила их эксплуатации.

Хочется выразить уверенность, что изложенные начальные сведения об устройстве современной пожарной сигнализации натолкнут читателя на мысль: на практике создать для себя оптимальную систему, исключающую пожар при случайном возгорании или при преднамеренном поджоге.

error: