Как сделать плавное включение ламп накаливания и для чего оно нужно. Схема плавного включения Плавное выключение ламп накаливания 220в схема

Лампочки Ильича до сих пор остаются лидерами по популярности, благодаря своей цене, но у них есть очень большой недостаток — малый срок работы, обусловленный разрушением нити накала во время включения. В настоящее время разработаны электронные устройства для плавного включения ламп накаливания, которые осуществляют подачу напряжения на спираль с нуля и до максимума в несколько секунд. Постепенный прогрев нити накала позволяет продлить ресурс лампочки в несколько раз, вместо заявленных 1000 часов. Разработанные схемы для самостоятельной сборки имеют немного деталей и обычно не требуют наладки. В это статье мы рассмотрим, как сделать плавное включение ламп накаливания на 220 В своими руками.

Внимание! Рассматриваемые устройства имеют на элементах сетевое напряжение и требуют особой осторожности при сборке и наладке.

Тиристорная схема

В цепи выпрямительного моста VD1, VD2, VD3, VD4 в качестве нагрузки и ограничителя тока стоит EL1. В плечах выпрямителя установлен тиристор VS1 и сдвигающая цепочка R1 и R2, C1. Установка диодного моста обусловлена спецификой работы тиристора.

После подачи напряжения на схему, ток протекает через нить накала и попадает на выпрямительный мост, далее через резистор происходит зарядка емкости электролита. При достижении напряжения порога открывания тиристора, он открывается, и пропускает через себя ток лампочки накаливания. Получается постепенный, плавный разогрев вольфрамовой спирали. Время разогрева зависит от емкости конденсатора и резистора.

Симисторная схема

Симисторная схема одержит меньше деталей, благодаря использованию симистора VS1 в качестве силового ключа. Элемент L1 для подавления помех, возникающих при открывании силового ключа, можно исключить из цепи. Резистор R1 ограничивает ток на управляющий электрод VS1. Время задающая цепочка выполнена на резисторе R2 и емкости C1, которые питаются через диод VD1. Схема работы аналогична предыдущей, при заряде конденсатора до напряжения открывания симистора, он открывается и через него и лампу начинает протекать ток.

На фото ниже предоставлен симисторный регулятор. Он кроме регулирования мощности в нагрузке, также производит плавную подачу тока на лампу накаливания во время включения.

Схема на специализированной микросхеме

Микросхема кр1182пм1 специально разработана для построения всевозможных фазовых регуляторов.

В данном случае, силами самой микросхемы регулируется напряжение на лампочке накаливания мощностью до 150 ватт. Если нужно управление более мощной нагрузкой, большим количеством осветителей одновременно, в цепь управления добавляется силовой симистор. Как это выполнить смотрите на следующем рисунке:

Использование данных устройств плавного включения не ограничиваются только лампами накаливания, их так же рекомендуется устанавливать совместно с галогеновыми на 220 в. Аналогичные по принципу действия устройства устанавливаются в электроинструменты, запускающие плавно якорь двигателя, также продлевая срок службы прибора в несколько раз.

Важно! С люминесцентными и светодиодными источниками устанавливать данное устройство категорически не рекомендуется. Это связано с разной схемотехникой, принципом действия, и наличием у каждого устройства собственного источника плавного разогрева для компактных люминесцентных ламп или отсутствии потребности в данном регулировании для LED.

Здравствуйте, уважаемые читатели сайта . Просматривая статью о , я сразу вспомнил о давно собранной и хорошо отрекомендовавшей себя схеме плавного включения и выключения освещения, которая была опубликована в журнале Радио №10 1981г., стр.54.

В приведённой конструкции при включении свет за 1,5 – 2 секунды плавно загорается до максимума, а при выключении гаснет так же плавно (как в кинотеатре) за 1,5 – 2 минуты. Эта конструкция очень здорово подходит применительно к ночнику, бра или люстре, правда применяться в светильниках должны только лампы накаливания. Очень важно, что использование предлагаемой схемы намного увеличивает срок службы ламп накаливания, поскольку у них есть характерная особенность очень часто перегорать в момент обычного включения.

Я повторил эту схему с теми же номиналами резисторов, но вместо германиевых транзисторов и диодов использовал кремниевые.

В качестве регулирующего элемента применил тиристор VD5 PCR406J от китайской ёлочной гирлянды, поэтому размеры печатной платы получились 40х30мм, что идеально подходит к размерам коробочки от управления гирляндой.

Чтобы схема работала во всём диапазоне напряжений от 0 до 220 В применён диодный мост VD6 VD9 , составленный из отечественных выпрямительных диодов КД105В . Диоды в развязках VD1 VD3 я использовал КД522В , но можно использовать и импортный аналог 1N4148 . Мощность гасящего резистора R7 уменьшена до 0,5Вт, а номинал увеличен до 68 кОм , все остальные резисторы МЛТ 0,125.

Увеличение номинала гасящего резистора R7 обеспечивает ток стабилизации стабилитрона VD4 , основного нагрузочного элемента схемы, в пределах 10–15мА, что является его номинальным током стабилизации. В данном случае схема работает в нормальном режиме без какого-либо нагрева резистора R7 .

Напряжение питания после гасящего резистора соответствует напряжению стабилизации стабилитрона VD4 (можно применить стабилитроны Д814 с буквенными индексами А – Д и напряжением стабилизации 7 — 12 В). У меня применён стабистор КС210Б – двуханодный стабилитрон, при использовании которого соблюдать полярность включения не требуется, а вот при применении обычного стабилитрона соблюдать полярность очень важно, так как если ошибиться, то стабилизации напряжения не будет.

При повторении схемы ставилась задача применения транзисторов на кремниевой основе, а так же хотелось максимально уменьшить габаритные размеры печатной платы. В приведенном варианте схема завелась с пол оборота, то есть хочу отметить, что при правильном монтаже и исправности применённых радиоэлементов всё должно заработать сразу.

Настройка минимальная и заключается только в подборке номиналов конденсаторов С1 и С2 . Увеличение ёмкости конденсатора С1 приводит к увеличению времени плавного погасания ламп, а уменьшение ёмкости С2 к увеличению времени плавного зажигания ламп. В качестве нагрузки использовалась настольная лампа с мощностью лампы накаливания 40 Вт.

Собранную и проверенную в работе конструкцию прилагаю на фото, но это чисто проверочный вариант, так как при создании собственной конструкции Вам, возможно, придётся применить свою смекалку и адаптировать схему под свой светильник. Если плата упакована в коробочке от ёлочной гирлянды, то её можно расположить около выключателя или спрятать где-нибудь поблизости. Из коробки выходят четыре провода – два на новый выключатель и два к уже установленному.

При мощности нагрузки до 60 Вт предложенный тиристор и диоды себя вполне удовлетворяют, а вот для мощности от 200 Вт и более необходимо применять выпрямительный мост и тиристор, рассчитанные на бóльший ток в соответствии с мощностью светильника. В моём первом варианте нагрузкой схемы была люстра суммарной мощностью 360 Вт и применены диоды Д245 и тиристор КУ202Н, и при этом никаких радиаторов не потребовалось. Сейчас в продаже имеется много мощных диодов, а так же диодных мостов, например KBL406.

Чтобы задействовать установку для работы к уже подключённой люстре необходимо два контакта диодного моста, идущие на переменку (у диодного моста эти выводы обозначены значком «~ »), подключить к клеммам выключателя, который должен находиться в разомкнутом состоянии, а так же установить рядом дополнительный выключатель, управляющий работой схемы.

Хочу немного сказать о применяемых транзисторах. В схеме могут работать практически любые транзисторы. Из отечественных вариантов хорошо подойдут КТ502, КТ503, КТ3102, КТ3107 с любым буквенным индексом. У меня для экономии места задействованы VT1 , VT4 КТ315 и VT3 КТ361 . Величина коэффициента усиления транзисторов не имеет особого значения, хотя транзистор VT2 КТ3107 , управляющий работой генератора импульсов, применён с немного бóльшим коэффициентом усиления h21э. Он поставлен скорее для перестраховки, но КТ502 или КТ361 то же должны работать надёжно.

Принцип работы схемы:

Управляющий «плюс» поступает через диод 1N4148 и резистор 4,7 кОм на базу транзистора КТ503. При этом транзистор открывается, и через него и резистор 68 кОм начинает заряжаться конденсатор. Напряжение на конденсаторе плавно растет, и далее через резистор 10 кОм поступает на вход полевого транзистора IRF9540. Транзистор постепенно открывается, плавно увеличивая напряжение на выходе схемы. При снятии управляющего напряжения транзистор КТ503 закрывается. Конденсатор разряжается на вход полевого транзистора IRF9540 через резистор 51 кОм. После окончания процесса разряда конденсатора схема перестает потреблять ток и переходит в режим ожидания. Потребляемый ток в этом режиме незначителен.

Схема с управляющим минусом:

Отмечена распиновка IRF9540N

Схема с управляющим плюсом:



Отмечена распиновка IRF9540N и KT503

В этот раз изготавливать схему решил методом ЛУТ (лазерно-утюжная технология). Делал я это первый раз в жизни, сразу скажу, что ничего сложного нет. Для работы нам понадобится: лазерный принтер, глянцевая фотобумага (или страница глянцевого журнала) и утюг.

К О М П О Н Е Н Т Ы:

Транзистор IRF9540N
Транзистор KT503
Выпрямительный диод 1N4148
Конденсатор 25V100µF
Резисторы:
- R1: 4.7 кОм 0.25 Вт
- R2: 68 кОм 0.25 Вт
- R3: 51 кОм 0.25 Вт
- R4: 10 кОм 0.25 Вт
Односторонний стеклотекстолит и хлорное железо
Клеммники винтовые, 2-х и 3-х контактные, 5 мм

При необходимости, изменить время розжига и затухания светодиодов можно подбором номинала сопротивления R2, а также подбором ёмкости конденсатора.


Р А Б О Т А:
?????????????????????????????????????????
?1? В этой записи подробно покажу, как изготавливать плату с управляющим плюсом. Плата с управляющим минусом делается аналогично, даже чуть проще из-за меньшего количества элементов. Отмечаем на текстолите границы будущей платы. Края делаем чуть больше, чем рисунок дорожек, а затем вырезаем. Существует много способов резки текстолита: ножовкой по металлу, ножницами по металлу, с помощью гравера и так далее.

Я с помощью канцелярского ножа сделал бороздки по намеченным линиям, далее выпилил ножовкой и обточил края напильником. Также пробовал использовать ножницы по металлу – оказалось гораздо проще, удобнее и без пыли.

Далее прошкуриваем заготовку под водой наждачной бумагой с зернистостью P800-1000. Затем сушим и обезжириваем поверхность платы 646 растворителем с помощью безворсовой салфетки. После этого нельзя руками прикасаться к поверхности платы.

2? Далее с помощью программы SprintLayot открываем и печатаем на лазерном принтере схему. Печатать необходимо только слой с дорожками без обозначений. Для этого в программе при печати слева вверху в разделе “слои” снимаем ненужные галочки. Также при печати в настройках принтера выставляем высокую четкость и максимальное качество изображения. Программу и чуть доработанные мной схемы залил для Вас на Яндекс.Диск.

С помощью малярного скотча приклеиваем на обычный лист А4 страницу глянцевого журнала/глянцевую фотобумагу (если их размеры меньше А4) и печатаем на ней нашу схему.

Я пробовал использовать кальку, страницы глянцевого журнала и фотобумагу. Удобнее всего, конечно, работать с фотобумагой, но в отсутствии последней и страницы журнала вполне сгодятся. Калькой же пользоваться не советую – рисунок на плате очень плохо пропечатался и получится нечётким.

3? Теперь прогреваем текстолит и прикладываем нашу распечатку. Затем утюгом с хорошим прижимом проутюживаем плату в течение нескольких минут.

Теперь даем плате полностью остыть, после чего опускаем в ёмкость с холодной водой на несколько минут и аккуратно избавляемся от бумаги на плате. Если целиком не отдирается, то скатываем потихоньку пальцами.

Затем проверяем качество пропечатанных дорожек, и плохие места подкрашиваем тонким перманентным маркером.



4? С помощью двустороннего скотча приклеиваем плату на кусочек пенопласта и помещаем в раствор хлорного железа на несколько минут. Время вытравливания зависит от многих параметров, поэтому периодически достаем и проверяем нашу плату. Хлорное железо используем безводное, разводим в теплой воде согласно пропорциям, указанным на упаковке. Чтобы ускорить процесс травления можно периодически покачивать ёмкость с раствором.

После того, как ненужная медь стравилась – отмываем плату в воде. Затем с помощью растворителя или наждачки счищаем тонер с дорожек.

5? Затем необходимо просверлить дырочки для монтажа элементов платы. Для этого я использовал бормашинку (гравер) и сверла диаметром 0.6 мм и 0.8 мм (из-за разной толщины ножек элементов).

6? Далее нужно облудить плату. Есть множество различных способов, я решил воспользоваться одним из самых простых и доступных. С помощью кисточки смазываем плату флюсом (например ЛТИ-120) и паяльником лудим дорожки. Главное не держать жало паяльника на одном месте, иначе возможен отрыв дорожек при перегреве. Берем на жало больше припоя и ведем им вдоль дорожки.

7? Теперь напаиваем необходимые элементы согласно схеме. Для удобства в SprintLayot распечатал на простой бумаге схему с обозначениями и при пайке сверял правильность расположения элементов.

8? После пайки очень важно полностью смыть флюс, в противном случае могут быть коротыши между проводниками (зависит от применяемого флюса). Сначала рекомендую тщательно протереть плату 646 растворителем, а потом хорошо промыть щеткой с мылом и высушить.

После сушки подключаем «постоянный плюс» и «минус» платы к питанию («управляющий плюс» не трогаем), затем вместо светодиодной ленты подсоединяем мультиметр и проверяем, нет ли напряжения. Если хоть какое-то напряжение все-таки присутствует, значит где-то коротит, возможно плохо смыли флюс.

Ф О Т О Г Р А Ф И И:

Любой экономный хозяин дома или квартиры стремиться к тому, чтобы рационально пользоваться электрической энергией, так как цены на неё достаточно высокие. Так, например, при некорректном использовании обычной лампы накаливания она будет регулярно «перегорать». Поэтому для того чтобы она смогла прослужить вам намного дольше специалисты рекомендуют использовать такие устройства, как приборы плавного включения. Также можно самостоятельно сделать такой блок, используя определённую схему.

Принцип работы УПВЛ

При резком потоке электроэнергии лампа накаливания очень быстро изнашивается и вольфрамовая нить перегорает. Но если температурный режим нити и электрического тока будет примерно одинаковый, то процесс будет стабилизирован и лампа не перегорит. Для того чтобы источники света работали как положено, необходимо иметь специальный блок питания.

Благодаря специальному датчику нить будет накаляться до необходимой температуры, и уровень напряжения будет увеличиваться до точки, указанной пользователем. Например, до 176 Вольт. В этом случае блок питания поможет существенно увеличить срок работы лампы.

Блок защиты имеет один недостаток - в помещении свет будет гореть значительно слабее.

В том случае, если напряжение будет 176 В, то уровень освещения снизится примерно на две трети. Поэтому специалисты рекомендуют приобретать мощные лампы, чтобы качество света было нормальным. В настоящее время существуют специальные блоки плавного включения (УПВЛ) ламп накаливания, которые отличаются различными параметрами мощности. Поэтому, прежде чем покупать блок, необходимо убедиться, сможет ли он выдержать большие скачки или перепады напряжения в электросети. Такое устройство обязательно должно иметь дополнительный запас, при этом будет вполне хватать того, чтобы напряжение в вашей электросети было больше потока скачков примерно процентов на 30.

Необходимо знать, что чем выше будет нормативный показатель, тем больше будут габариты блока питания. В настоящее время можно приобрести блок питания мощностью от 150 до 1000 Ватт.

Виды блоков питания и их характеристики

Сегодня существует множество различных устройств плавного включения ЛН. Самыми востребованными являются:

Схемы

Для того чтобы правильно использовать блоки плавного включения ЛК необходимо использовать специальные электросхемы. Благодаря таким схемам можно легко понять, как работает данный прибор и устроен изнутри, а также как его необходимо эксплуатировать.

Обычно при подключении такого устройства специалисты пользуются наиболее простым и лёгким вариантом схемы. Иногда используют специальную схему с внедрением симистеров. Также, кроме блоков данного вида можно брать полевые транзисторы, которые работают аналогично приборам плавного включения.

Также того чтобы можно было контролировать напряжение в приборе плавного включения можно использовать автоматические приборы.

Что собой представляет тиристорная схема

Цепь моста выпрямления (рис.VD1, VD2, VD3, VD4) использует лампочку (рис. EL1) как нагрузку и токоограничитель. Плечи выпрямителя оснащены тиристором (рис. VS1) и сдвигающейся цепью (рис. R1, R2 и C1). Также диодный мост устанавливается за счёт спецификации работы прибора тиристора.

После того как напряжение подаётся на схему, электроток начинает идти через спираль накала и поступает на мост, а затем посредством резистора осуществляется зарядка электролита. Когда достигается предел напряжения открытия тиристора, он начинает открываться и тогда через него проходит ток от лампочки. В результате этого вольфрамовая нить разогревается постепенно и плавно. Период ее разогрева будет зависеть от ёмкости находящегося в схеме устройства конденсатора и резистора.

Чем примечательна симисторная

Такая схема имеет меньшее количество деталей за счёт применения симистора (рис. VS1), который служит силовым ключом.

Такой элемент, как дроссель (рис. L1), который предназначен для удаления различных помех, появляющихся во время открытия силового ключа, разрешено убрать из общей цепи. (рис. R1)Резистор является ограничителем тока, который поступает на главный электрод (рис. VS1). Цепь, которая задаёт время, исполнена на резисторе (рис. R2) и ёмкости (рис. С1), питающимися посредством диода (рис. VD1). Данная схема работает также как и предыдущая. Когда конденсатор заряжается до уровня напряжения открытия симистора, он начинает открываться, а затем через него и лампочку поступает электрический ток.

На фотографии внизу мы можем увидеть симисторный регулятор. Такое устройство кроме регулировки мощности в нагрузке, также осуществляет плавное поступление электротока на лампочку, когда её включают.

Схема работы блока на специализированной микросхеме

Микросхема типа кр1182пм1 была специально создана специалистами для построения различных фазовых регуляторов.

В этом случае происходит так, что с помощью самой микросхемы происходит регулирование напряжения на источнике, который обладает мощностью до 150 ватт. А если понадобится управлять более сильной системой нагрузки и десятками осветительных приборов одновременно, то в управленческую цепь просто включается дополнительно силовой симистр. На рисунке внизу мы можем увидеть, как это происходит.

Применение блоков плавного включения не заканчивается только на обычных лампах, так как специалисты рекомендуют использовать их вместе с галогеновыми лампами, мощностью в 220 В.

Важно знать! С люминесцентными и LED лампами (светодиодными) такие блоки устанавливать нельзя. Это связано с тем, что здесь присутствует различная техника разработки схем, а также принцип действия и присутствие у каждого осветительного прибора своего источника размеренного нагрева для люминесцентных ламп или нет потребности в таком регулировании ламп LED .

Устройство плавного включения (УПВЛ) для ламп накаливания в 220в и 12в

На сегодняшний день производится большое количество различных моделей УПВЛ, которые отличаются между собой по функциям, стоимости и качеству. Устройство, которое продаётся в специализированных магазинах, подключается последовательно к источнику света на 220 В. Схему и внешний вид устройства мы можем увидеть на фотографии внизу.

Если же мощность питания ламп 12 или 24 В, то прибор необходимо подключать перед понижающим трансформатором также последовательно к начальной первичной обмотке.

Прибор должен соответствовать нагрузке, которая будет подключаться с определённым запасом. Для этого надо подсчитать число светильников и их общую мощность.

Так как устройство имеет небольшие размеры, то УПВЛ можно разместить под люстрой, в подрозетнике или в коробке соединения.

Диммеры или светорегуляторы

Экономически выгодно и рационально использовать приборы, создающие плавное включение ламп, а также обеспечивающие процесс регулирования их степени яркости. Диммеры различных моделей могут:

  • Задавать программы работы осветительных приборов;
  • Плавно включать и выключать лампы;
  • Управляться пультом, голосовыми командами или хлопками.

Приобретая данное устройство необходимо сразу определиться с выбором, чтобы знать какие требуются функции, и не покупать дорогостоящий прибор за большие деньги.

Перед установкой диммера необходимо определиться со способом и местом управления осветительными приборами. Для этого надо будет смонтировать электропроводку соответствующего вида.

Схемы подключения могут быть различной степени сложности. В любом случае вначале необходимо отключить напряжение с определённого участка.

На рисунке мы показали самую простую схему подключения. Здесь вместо простого выключателя можно сделать светорегулятор.

Прибор подключается в разрыв L - провода с фазой, а не N - нулевого. Между нулевкой и диммером находится осветительный прибор. Соединение с ним выходит последовательным.

Рисунок (Б) представляет схему с выключателем. Процесс подключения остаётся таким же, но здесь прибавляется простой выключатель. Его обычно устанавливают возле двери в определённый разрыв между фазой и самим диммером. Возле кровати находится светорегулятор, который позволяет управлять освещением лёжа. Когда человек выходит из помещения, свет выключается, а когда входит обратно осуществляется пуск лампы с такой же степенью яркости.

Для того чтобы управлять люстрой или другим осветительным прибором можно взять два диммера, которые будут находиться в разных углах помещения (рис.А). Между собой два прибора подключаются посредством распределительной коробки.

Схема управления лампой накаливания: а - с двумя диммерами, б - с двумя проходными выключателями и диммером

Благодаря такой системе подключения можно регулировать степень яркости с различных мест независимо друг от друга, но проводов надо будет монтировать больше.

Проходные выключатели используются для включения ламп с различных мест в помещении (рис.Б). Также при этом надо включить диммер, в противном случае светильники не будут реагировать на выключатели.

Характеристики диммеров:

  • Диммер экономит электроэнергию всего лишь на 15%, а остальная часть используется регулятором.
  • Приборы имеют большую степень чувствительности к увеличению температуры. Поэтому их нельзя эксплуатировать при температуре выше 27°С.
  • Степень нагрузки не должна быть меньше 40 Вт, так как срок эксплуатации регулятора существенно снижается.
  • Диммеры необходимо использовать только для тех видов устройств, которые рекомендуются производителем и написаны в паспорте.

Видео: устройство УПВЛ

УПВЛ позволяют существенно увеличить срок эксплуатации галогенных ламп и ламп накаливания. Это небольшие и недорогие приборы, которые можно купить в любом магазине и установить самостоятельно, имея определённую схему и точно следуя инструкциям производителей.

В наше время проблема непродолжительной работы ламп накаливания остается актуальной. В большинстве случаев лампа накаливания перегорает в момент ее включения. Это происходит из-за того, что при включении на нее подается полное напряжение, и нить накала, не успевая достаточно прогреется, перегорает.

Плавное включение ламп накаливания на симисторе поможет исправить данную ситуацию. Схема плавного включения ламп накаливания позволяет уменьшить первоначальный скачек тока проходящий через нить лампы накаливания.

Описание работы автомата плавного включения лампы

Работает автомат следующим образом. После включения, ток в отрицательный полупериод протекает через цепь R1-VD1-L1-EL1. В результате этого лампа загорается в пол накала. В этот же момент, ток, проходя через резистор R2, заряжает C1. Примерно через 1-2 секунды, когда зарядится конденсатор C1, лампа загорится в полную силу.

Детали устройства

Вместо диода Д226 возможно применить диоды КД109Б, КД221В. Дроссель L1 состоит из 60 витков провода ПЭВ-2 диаметром 1 мм намотанных на ферритовый стержень диаметром 8 мм и длинной около 70 мм. Марка феррита 400НН или 600НН. Конденсаторы C1- К50-16, C2- К73-16, К73-17 на напряжение не менее 400В.

Внимание! Так как элементы схемы находятся под напряжением электросети, то следует соблюдать меры электробезопасности при наладке прибора.

error: