Ардуино: управление двигателем постоянного тока, L293D. Радиодетали - обозначения на схеме. Как читать обозначения радиодеталей на схеме? Электромагнитное реле с разными группами контактов

Сегодня мы рассмотрим схему, позволяющую изменять полярность прикладываемого к нагрузке постоянного напряжения.

Необходимость изменять полярность напряжения часто возникает при управлении двигателями или в схемах мостовых преобразователей напряжения. Например, для двигателей постоянного тока это необходимо для изменения направления вращения, а шаговые двигатели или импульсные мостовые DC-DC преобразователи без решения этой задачи вообще не будут работать.

Итак, ниже вы можете видеть схему, которую за внешнюю схожесть с буквой H принято называть H-мостом.

К1, К2, К3, К4 — управляемые ключи

A, B, C, D — сигналы управления ключами

Идея этой схемы очень проста:

Если ключи K1 и К4 замкнуты, а ключи К2 и К3 разомкнуты, то к точке h1 оказывается приложено напряжение питания, а точка h2 замыкается на общий провод. Ток через нагрузку в этом случае течёт от точки h1 к точке h2.

Если сделать наоборот, — ключи К1 и К4 разомкнуть, а ключи К2 и К3 замкнуть, то полярность напряжения на нагрузке изменится на противоположную, — точка h1 окажется замкнута на общий провод, а точка h2 — на шину питания. Ток через нагрузку теперь будет течь от точки h2 к точке h1.

Кроме смены полярности, h-мост, в случае управления электродвигателем, добавляет нам и ещё один бонус — возможность закоротить концы обмоток, что ведёт к резкому торможению нашего движка. Такой эффект можно получить замкнув одновременно либо ключи К1 и К3, либо ключи К2 и К4. Назовём такой случай «режимом торможения». Справедливости ради стоит отметить, что этот бонус H-моста используется значительно реже, чем просто смена полярности (позже будет понятно почему).

В качестве ключей может выступать всё, что угодно: реле, полевые транзисторы, биполярные транзисторы. Промышленность делает H-мосты встроенными в микросхемы (например, микросхема LB1838, драйвер шагового двигателя, содержит два встроенных H-моста) и выпускает специальные драйверы для управления H-мостами (например драйвер IR2110 для управления полевиками). В этом случае, разработчики микросхем конечно стараются выжать максимум бонусов и устранить максимум нежелательных эффектов. Понятно, что такие промышленные решения справляются с задачей лучше всего, но радиохламеры народ бедный, а хорошие микросхемы стоят денег, поэтому мы, ясен пень, будем рассматривать чисто самопальные варианты мостов и схем управления ими.

В самопальщине (то бишь в радиолюбительской практике) чаще всего используют H-мосты либо на мощных MOSFET-ах (для больших токов), либо на биполярных транзисторах (для небольших токов).

Довольно часто сигналы управления ключами попарно объединяют. Объединяют их таким образом, чтобы от одного внешнего сигнала управления формировалось сразу два сигнала управления в нашей схеме (то есть сразу на два ключа). Это позволяет сократить количество внешних сигналов управления с четырёх до двух штук (и сэкономить 2 ноги контроллера, если у нас контроллерное управление).

Объединяют сигналы чаще всего двумя способами: либо A объединяют с B, а C объединяют с D, либо A объединяют с D, а B объединяют с C. Чтобы обозначить и зафиксировать различия, — назовём способ, когда образуют пары AB и CD «общим управлением противофазными ключами» (эти ключи для изменении полярности прикладываемого к нагрузке напряжения должны работать в противофазе, т.е. если один открывается — другой должен закрываться), а способ, когда образуются пары AD и BC назовём «общим управлением синфазными ключами» (эти ключи для изменении полярности работают синфазно, т.е. либо оба должны открываться, либо оба закрываться).

Чтобы было понятнее о чём идёт речь, — смотрим на рисунок справа. Договоримся далее высокий уровень напряжения считать единицей, а низкий — нулём. В левой части рисунка транзисторы управляются независимо друг от друга. Чтобы открыть верхний транзистор — нужно подать сигнал управления А=0, а чтобы его закрыть — нужно подать А=1. Для открытия и закрытия нижнего транзистора нужно подавать B=1 или В=0. Если с помощью дополнительного транзистора объединить сигналы A и В (смотрим правую часть рисунка), то управлять верхним и нижним транзистором можно одним общим сигналом АВ. Когда АВ=1 оба транзистора открываются, а когда АВ=0 — оба закрываются.


На рисунке слева показан H-мост с общим управлением противофазными ключами, а на рисунке справа — с общим управлением синфазными ключами. У1 и У2 — это узлы, позволяющие из одного внешнего общего сигнала сформировать отдельный сигнал на каждый из работающих в паре ключей.

Теперь давайте подумаем что нам даёт каждый из этих двух способов управления.

При общем управлении противофазными ключами мы легко можем сделать так, чтобы оба верхних или оба нижних ключа оказались открыты (если схема такая, как у нас слева, то это произойдёт при AB=CD), то есть нам доступен режим торможения. Однако минус в том, что при таком способе управления мы практически наверняка получим сквозные токи через транзисторы, вопрос будет только в их величине. В проиышленных микрухах для борьбы с этой проблемой вводят специальную цепь задержки для одного из транзисторов.

При общем управлении синфазными ключами мы легко можем побороть сквозные токи (просто нужно сначала подавать сигнал на выключение той пары транзисторов, которая используется в настоящий момент, а уже потом сигнал на включение той пары, которую мы планируем использовать). Однако при таком управлении про режим торможения можно забыть (даже более того, если мы случайно одновременно подадим на оба внешних управляющих сигнала единицу — мы устроим в схеме КЗ).

Поскольку получить сквозные токи гораздо более кислый вариант (бороться с ними непросто), то обычно предпочитают забыть про режим торможения.

Кроме всего вышеперечисленного необходимо понимать, что при частых постоянных переключениях (в преобразователях или при управлении шаговиками), для нас будет принципиально важно не только избежать возникновения сквозных токов, но и добиться максимальной скорости переключения ключей, поскольку от этого зависит их нагрев. Если же мы используем h-мост просто для реверса двигателя постоянного тока, то тут скорость переключения не имеет такого критического значения, поскольку переключения не имеют систематического характера и ключи даже в случае нагрева скорее всего успеют остыть до следующего переключения.

Вот в общем-то и вся теория, если вспомню ещё что-нибудь важное — обязательно напишу.

Как вы понимаете, практических схем H-мостов, как и вариантов управления ими, можно придумать достаточно много, поскольку, как мы уже разобрались, важно учитывать и максимальный ток, и скорость переключения ключей, и варианты объединения управления ключами (а также вообще возможность такого объединения), поэтому для каждой практической схемы нужна отдельная статья (с указанием того, где эту конкретную схему целесообразно использовать). Здесь же я приведу для примера лишь простую схемку на биполярных транзисторах, годящуюся, скажем, для управления не очень мощными двигателями постоянного тока (зато покажу, как её рассчитывать).

Итак, пример:

Сам H-мост выполнен на транзисторах T1, T2, T3, T4, а с помощью дополнительных транзисторов T5, T6 выполнено объединение управления синфазными ключами (сигнал A управляет транзисторами T1 и T4, сигнал B — транзисторами T2 и T3).

Работает эта схема следующим образом:

Когда уровень сигнала A становится высоким — начинает течь ток через резистор R2 и p-n переходы БЭ транзисторов T5 и T4, эти транзисторы открываются, в результате чего появляется ток через переход БЭ транзистора T1, резистор R1 и открытый транзистор T5, в результате чего открывается транзистор T1.

Когда уровень сигнала A становится низким — запираются p-n переходы БЭ транзисторов T5 и T4, эти транзисторы закрываются, прекращает течь ток через переход БЭ транзистора T1 и он тоже закрывается.

Как такую схему рассчитать? Очень просто. Пусть у нас напряжение питания 12В, максимальный ток двигателя 1А и сигнал управления также 12-ти вольтовый (состоянию «1» соответствует уровень напряжения около 12В, состоянию «0» — уровень около нуля вольт).

Сначала выбираем транзисторы T1, T2, T3, T4. Подойдут любые транзисторы, способные выдержать напряжение 12В и ток 1А, например, КТ815 (npn) и его комплиментарная пара — КТ814 (pnp). Эти транзисторы рассчитаны на ток до 1,5 Ампер, напряжение до 25 Вольт и имеют коэффициент усиления 40.

Рассчитываем минимальный ток управления транзисторов T1, T4: 1А/40=25 мА.

Рассчитываем резистор R1, полагая, что на p-n переходах БЭ транзисторов T1, T4 и на открытом транзисторе T5 падает по 0,5В: (12-3*0,5)/25=420 Ом. Это максимальное сопротивление, при котором мы получим нужный ток управления, поэтому мы выберем ближайшее меньшее значение из стандартного ряда: 390 Ом. При этом наш ток управления будет (12-3*0,5)/390=27 мА, а рассеиваемая на резисторе мощность: U 2 /R=283 мВт. То есть резистор надо ставить на 0,5 Вт (ну или поставить несколько 0,125 ваттных параллельно, но чтоб их общее сопротивление получилось 390 Ом)

Транзистор T5 должен выдерживать всё те же 12В и ток 27 мА. Подойдёт, например, КТ315А (25 Вольт, 100 мА, минимальный коэффициент усиления 30).

Рассчитываем его ток управления: 27 мА / 30 = 0,9 мА.

Рассчитываем резистор R2, полагая, что на переходах БЭ транзисторов T5 и T4 падает по 0,5 В: (12-2*0,5)/0,9 = 12 кОм. Опять выбираем ближайшее меньшее значение из стандартного ряда: 10 кОм. При этом ток управления T5 будет 1,1 мА и на нём будет рассеиваться 12,1 мВт тепла (то есть подойдёт обычный резистор на 0,125 Вт).

Вот и весь расчёт.

Далее хотелось бы поговорить вот о чём. В приведённых в статье теоретических схемах H-мостов у нас нарисованы только ключи, однако в рассматриваемом примере, кроме ключей присутствуют ещё одни элементы — диоды. Каждый наш ключ шунтирован диодом. Зачем это сделано и можно ли сделать как-то иначе?

В нашем примере мы управляем элетродвигателем. Нагрузкой, на которой мы переключаем полярность с помощью H-моста, является обмотка этого двигателя, то есть нагрузка у нас индуктивная. А у индуктивности есть одна интересная особенность — ток через неё не может измениться скачком.

Индуктивность работате как маховик — когда мы его раскручиваем — он запасает энергию (и мешает раскручиванию), а когда мы его отпускаем — он продолжает крутиться (расходуя
запасённую энергию). Так и катушка, — когда к ней прикладывают внешнее напряжение — через неё начинает течь ток, но он не резко вырастает, как через резистор, а постепенно, поскольку часть передаваемой источником питания энергии не расходуется на разгон электронов, а запасается катушкой в магнитном поле. Когда мы это внешнее напряжение убираем, — ток через катушку тоже не спадает мгновенно, а продолжает течь, уменьшаясь постепенно, только теперь уже на поддержание этого тока расходуется запасённая ранее в магнитном поле энергия.

Так вот. Посмотрим ещё раз наш самый первый рисунок (вот он, справа). Допустим у нас были замкнуты ключи К1 и К4. Когда мы эти ключи размыкаем, у нас через обмотку продолжает течь ток, то есть заряды продолжают перемещаться от точки h1 к точке h2 (за счёт энергии, накопленной обмоткой в магнитном поле). В результате этого перемещения зарядов, потенциал точки h1 падает, а потенциал точки h2 вырастает. Возникновение разности потенциалов между точками h1 и h2 при отключении катушки от внешнего источника питания известно также как ЭДС самоиндукции. За то время, пока мы открываем ключи K3 и К2, потенциал точки h1 может упасть значительно ниже нуля, также как и потенциал точки h2 может вырасти значительно выше потенциала шины питания. То есть наши ключи могут оказаться под угрозой пробоя высоким напряжением.

Как с этим бороться? Есть два пути.

Первый путь. Можно зашунтировать ключи диодами, как в нашем примере. Тогда при падении потенциала точки h1 ниже уровня общего провода откроется диод D3, через который с общего провода в точку h1 потечёт ток, и дальнейшее падение потенциала этой точки прекратиться. Аналогично, при росте потенциала точки h2 выше потенциала шины питания откроется диод D2, через который потечёт ток из точки h2 на шину питания, что опять же предотвратит дальнейший рост потенциала точки h2.

Второй путь основан на том факте, что при перекачивании зарядов из одной точки схемы в другую, изменение потенциалов между этими двумя точками будет зависеть от ёмкости схемы между этими точками. Чем больше ёмкость — тем больший заряд нужно переместить из одной точки в другую для получения одной и той же разности потенциалов (подробнее читайте в статье «Как работают конденсаторы»). Исходя из этого можно ограничить рост разности потенциалов между концами обмотки двигателя (а, соответственно, и рост разности потенциалов между точками h1, h2 и шинами питания и земли), зашунтировав эту обмотку конденсатором. Это, собственно, и есть второй путь.

На этом на сегодня всё, удачи!

Рассмотрим драйвер электродвигателей на транзисторах и микросхеме L298, разберемся с принципом работы H-моста. Узнаем особенности подключения драйверов на L298 к разным двигателям и источникам питания, проведем простые эксперименты с шаговыми движками и двигателями постоянного напряжения. Подключение к Raspberry Pi и простейшие программы для теста управления драйвером.

Что такое H-мост

При проектировании станков, роботов и других автоматизированных устройств возникает необходимость управлять электродвигателем постоянного тока или же катушками шагового движка. Для того, чтобы иметь возможность управлять обмоткой двигателя и заставить его вал вращаться в разные стороны, необходимо выполнять коммутацию с переполюсовкой. Для подобной цели используется так называемый "H-мост".

Почему такое название? - потому что схема включения двигателя и переключателей для коммутации напоминает латинскую букву H. Принципы работы H-моста показан нарисунке ниже.

Рис. 1. Как работает H-мост, принцип коммутации двигателя для вращения в разные стороны.

Как видим, при помощи 4х переключателей мы можем подключать мотор к источнику питания в разной полярности, что в свою очередь заставит вращаться его вал в разные стороны. Переключатели можно заменить на реле, или же на мощные электронные ключи на транзисторах.

Важно заметить что НЕЛЬЗЯ допускать замыкания двух ключей на одной стороне H-моста, поскольку получится короткое замыкание, при проектировании схемы моста нужно заложить это правило в логику и таким образом реализовать защиту.

Схема простого H-моста на кремниевых транзисторах

Собрать простой драйвер двигателя постоянного тока (или для обмотки шагового двигателя) можно на распространенных кремниевых транзисторах.

Рис. 2. Принципиальная схема простого драйвера электродвигателя на кремниевых транзисторах.

Такой драйвер позволяет управлять электродвигателем постоянного тока с питающим напряжением до 25В (для КТ817А, КТ816А) и до 45В (для КТ817Б-Г, КТ816Б-Г) с током не более 3А. При большом рабочем и нагрузочном токе двигателя выходные транзисторы КТ817 и КТ816 должны быть установлены на радиаторы достаточного размера.

Установка диодов VD1-VD2 обязательна, они нужны для защиты выходных транзисторов от обратного тока. На их место можно поставить отечественные КД105А или другие на больший ток.

Собрав две такие схемки (2х6 транзисторов) можно также управлять шаговым двигателем или же двумя двигателями постоянного тока.

Для того чтобы не городить огород из 12 транзисторов можно применить специализированные микросхемы, ниже мы рассмотрим пример с микросхемой L298 и готовым блоком на ее основе.

Микросхема L298, характеристики и возможности

Интегральная микросхема L298 - это мощный универсальный мостовой драйвер для управления двигателями постоянного тока, шаговыми движками, электромагнитными реле и электромагнитами (соленоидами). В микросхеме содержится два H-моста, выполненных на мощных транзисторах, а также логика совместимая с TTL.

Рис. 3. Микросхема L298 в корпусах Multiwatt15 PowerSO20.

Основные технические характеристики:

  • Рабочее напряжение - до 46В;
  • Максимальный постоянный ток - 4А (с радиатором);
  • Низкое напряжение насыщения;
  • Защита от перегрева;
  • Логический "0" = напряжение до 1,5В.

Где можно применить драйвер на микросхеме L298? - несколько идей:

  • Управление шаговым двигателем;
  • Управление двумя двигателями постоянного тока (DC motors);
  • Коммутация катушек мощных реле;
  • Управление соленоидами (электромагнитами).

Если посмотреть на структурную схему микросхему L298 то мы можем увидеть что-то на подобии схемы на рисунке 2, только с дополнительными логическими элементами.

Рис. 4. Внутренняя схема микросхемы L298N - мощный двойной H-мост.

Для каждого H-моста мы имеем по 3 входа: In1 - для подачи напряжения в одном направлении, In2 - в противоположном, и еще один вход En для подачи питания на выходные транзисторы моста.

Таким образом мы можем установить направление прохождения тока и управлять его подачей (включено или выключено, а также ШИМ).

Схема драйвера на микросхеме L298

Ниже представлена простая схема для драйвера двигателей на микросхеме L298N. Управление осуществляется по четырем проводам (вместо шести у L298) благодаря использованию дополнительных инверторов в микросхеме CD4011.

Рис. 5. Принципиальная схема драйвера электродвигателей на микросхеме L298N.

Для питания логики обеих микросхем нужно стабилизированное напряжение +5В (P2), можно использовать интегральный стабилизатор, например L7805 или же питать логику от имеющейся линии питания +5В. Для подачи питающего напряжения на двигатели используется отдельная линия питания P1.

Выводы P4, P5 используются для установки полярности каждого из каналов, а выводы P6, P7 - разрешают подачу питания на каскады (ключи) внутреннего H-моста для каждого канала.

Микросхему CD4011 можно заменить на отечественную К176ЛА7. Диоды Шоттки можно поставить другого номинала, на 35В/4А и более. Если не планируется ограничивать ток обмоток двигателя(двигателей) то низкоомные ограничивающие резисторы R9-R10 можно исключить из схемы, заменив их на перемычки.

В интернете можно заказать готовый модуль на L298, правда в нем будет 6 входов для управления.

Рис. 6. Готовые модули на L298.

Я для своих нужд приобрел готовый модуль по типу как на рисунке слева. В нем присутствует микросхема L298 и небольшой стабилизатор для подачи +5В на логику микросхемы.

Для подключения данной платки важно четко уяснить одну особенность:

  • Если для питания двигателей используется напряжение более чем 12В то перемычку нужно убрать и подавать отдельно 5В на выделенный для этого коннектор
  • Если питание двигателей будет осуществляться от напряжения 5-12В то перемычку нужно утсановить и дополнительное питание 5В не понадобится.

Если же подать на двигатели, например 20В и оставить перемычку установленной, то на модуле выгорит микросхемка-стабилизатор на 5В. Почему разработчики не установили интегральный стабилизатор с более широким диапазоном входных напряжений - не понятно.

Для того чтобы сэкономить два входа при подключении такого блока к Arduino или Raspberry Pi можно добавить часть схемы на CD4001, как на рисунке 5.

L298 + DC двигатели + Raspberry Pi

Для данного эксперимента к модулю на L298 были подключены два двигателя постоянного тока. Питание всего модуля осуществляется от одного аккумулятора на 6В. Поскольку это напряжение меньше 12В (смотрим выше описание) то перемычку внутреннего стабилизатора оставляем установленной и дополнительное питание +5В для логики не потребуется.

Перемычки "ENA" и "ENB", которые разрешают подачу питания на выходные мосты, оставлены установленными. Таким образом, для управления каждым из двигателей используем оставшиеся четыре входа: IN1, IN2, IN3, IN4.

После подключения питания на модуле загорится светодиод, теперь можем подать на каждый из входов поочередно +5В и посмотреть как будут вращаться наши движки.

Где взять +5В? - в данном случае это напряжение присутствует на разъеме питания, справа возле GND. Для теста можно воспользоваться кусочком проволоки - перемычкой.

Теперь подключим наш модуль к Raspberry Pi и напишем простую тестовую программу на Python. Для подключения модуля я использовал выводы GPIO вот в таком соответствии:

Рис. 7. L298 + Raspberry Pi + электродвигатели постоянного тока.

Мини-компьютер у меня питается через понижающий импульсный стабилизатор от второго аккумулятора на 6В. Перейдем к написанию программы для нашего эксперимента, наша цель - управлять вращением вала каждого из двигателей при помощи клавиатуры, которая подключена к Raspberry Pi или же удаленно по SSH, VNC.

Теперь испробуем простую программу, написанную на Python, которая поможет понять принцип управления электродвигателем постоянного тока.

Загружаем малинку, открываем Терминал или же подключаемся к ней удаленно при помощи SSH. Создаем новый файл и открываем его для редактирования при помощи команды:

Nano /home/pi/l298_dc_motors_test.py

Вставляем в редактор код скрипта на Python, который приведен ниже:

#!/usr/bin/env python # -*- coding: utf-8 -*- import time import RPi.GPIO as GPIO # Подготавливаем пины GPIO. GPIO.cleanup() GPIO.setmode(GPIO.BCM) GPIO.setup(4, GPIO.OUT) GPIO.output(4, GPIO.LOW) GPIO.setup(17, GPIO.OUT) GPIO.output(17, GPIO.LOW) # Включаем вращение двигателя 1 в одну сторону. GPIO.output(4, GPIO.HIGH) # ждем 5 секунд. time.sleep(5) # Выключаем двигатель 1. GPIO.output(4, GPIO.LOW) # ждем 10 секунд. time.sleep(10) # Включаем вращение двигателя 1 в другую сторону. GPIO.output(17, GPIO.HIGH) # ждем 5 секунд. time.sleep(5) # Выключаем двигатель 1. GPIO.output(17, GPIO.LOW)

Выходим из редактора и сохраняем файл. Делаем скрипт исполняемым и запускаем его:

Chmod +x /home/pi/l298_dc_motors_test.py /home/pi/l298_dc_motors_test.py

После запуска скрипта один из двигателей начнет вращаться в одну сторону на протяжении пяти секунд, потом он выключится и через 10 секунд начнет вращаться в другую сторону на протяжении 5-ти секунд.

Ниже приведен более сложный и функциональный пример программы, которая будет взаимодействовать с пользователем и позволит интерактивно управлять двумя электродвигателями. Аналогично первому скрипту, программу можно сохранить в тот же файл или в новый отдельно созданный.

Важно чтобы в данном примере кода соблюдались отступы, об этом я уже писал раньше .

#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys import curses import time import RPi.GPIO as GPIO # Установим номера пинов GPIO, с которыми будем работать M1_RIGHT = 4 M1_LEFT = 17 M2_RIGHT = 27 M2_LEFT = 22 # Функция для подготовки пинов GPIO def setup(*ports): GPIO.cleanup() # Режим именования пинов по названию, а не по номеру на плате GPIO.setmode(GPIO.BCM) for port in ports: # Установка пина на вывод + низкий уровень "0" GPIO.setup(port, GPIO.OUT) GPIO.output(port, GPIO.LOW) # Функция для установки низкого уровня на всех пинах (выключение) def stop_all(): GPIO.output(M1_LEFT, GPIO.LOW) GPIO.output(M1_RIGHT, GPIO.LOW) GPIO.output(M2_LEFT, GPIO.LOW) GPIO.output(M2_RIGHT, GPIO.LOW) # Функция для управления вращением движков def rotate(motor=1, mode="s"): # Выключаем все пины stop_all() # Для мотора 1 if motor == 1: if mode == "r": # Устанавливаем высокий уровень на пине M1_RIGHT (4) GPIO.output(M1_RIGHT, GPIO.HIGH) elif mode == "l": # Устанавливаем высокий уровень на пине M1_LEFT (17) GPIO.output(M1_LEFT, GPIO.HIGH) # Для мотора 2 elif motor == 2: if mode == "r": GPIO.output(M2_RIGHT, GPIO.HIGH) elif mode == "l": GPIO.output(M2_LEFT, GPIO.HIGH) # Выполним инициализацию пинов GPIO setup(M1_RIGHT, M1_LEFT, M2_RIGHT, M2_LEFT) # Инициализация экрана (модуль curses) stdscr = curses.initscr() # Реагировать на нажатие клавиш без подтверждения при помощи ENTER curses.cbreak() # Разрешить использование стрелочек на клавиатуре stdscr.keypad(1) # Не блокировать программу по времени при опросе событий stdscr.nodelay(1) # Отобразим на экране данные по умолчанию stdscr.addstr(0, 10, "Hit "q" to quit") stdscr.addstr(2, 10, "A - M1 Left, D - M1 Right") stdscr.addstr(3, 10, "< - M2 Left, > - M2 Right") stdscr.addstr(4, 10, "S - stop") stdscr.refresh() # Главный цикл while True: # Получаем код нажатия клавиши и проверяем его key = stdscr.getch() if key != -1: # Если клавиша "стрелка влево" то вращаем движок 2 влево if key == curses.KEY_LEFT: # Выводим на экран строку "M2 <---" в позиции 6, 10 stdscr.addstr(6, 10, "M2 <---") rotate(2, "l") # Если клавиша "стрелка вправо" то вращаем движок 2 вправо elif key == curses.KEY_RIGHT: stdscr.addstr(6, 10, "M2 --->") rotate(2, "r") # Если клавиша "а" то вращаем движок 1 влево elif key == ord("a"): stdscr.addstr(6, 10, "M1 <---") rotate(1, "l") # Если клавиша "d" то вращаем движок 1 вправо elif key == ord("d"): stdscr.addstr(6, 10, "M1 --->") rotate(1, "r") # Если клавиша "s" то останов всех движков elif key == ord("s"): stdscr.addstr(6, 10, "STOP 12") stop_all() # Если клавиша "s" то выходим из программы elif key == ord("q"): # Восстановление прежних настроек терминала stdscr.keypad(0) curses.echo() curses.endwin() # Очистка и выход os.system("clear") sys.exit() # Обновляем текст на экране и делаем небольшую задержку stdscr.refresh() time.sleep(0.01)

Запустив скрипт можно понажимать стрелочки клавиатуры "влево" и "вправо", а также клавиши с буквами "A" и "D" - двигатели должны вращаться поочередно и в разные стороны, а программа будет отображать их текущий режим работы.

Рис. 8. Программа на Python для управления двигателями при помощи драйвера L298 (терминал Konsole, KDE).

Краткая видео-демонстрация работы данного эксперимента приведена ниже:

Что такое шаговый двигатель, типы шаговиков

Шаговый двигатель (для тех кто не знает) - это электромотор, в котором нет щеток и обмоток на статоре (якоре), они присутствуют на роторе и размещены таким образом что подключая каждую из них к источнику питания мы выполняем фиксацию ротора (делаем один шаг). Если поочередно подавать напряжение на каждую из обмоток с нужной полярностью то можно заставить двигатель вращаться (делать последовательные шаги) в нужном направлении.

Шаговые двигатели надежны, стойки к износу и позволяют контролировать вращение на определенный угол, применяются в автоматизации процессов, на производстве, в электронно-вычислительной аппаратуре(CD-DVD приводы, принтеры, копиры) и т.п.

Такие двигатели бывают следующих видов:

  • Биполярный - 2 обмотки, по одной на каждую фазу, для управления можно использовать схему на 2 H-моста или один полу-мост с двуполярным питанием;
  • Униполярный - 2 обмотки, каждая с отводом от середины, удобно переключать фазы сменой половинок каждой из обмоток, упрощает схему драйвера (4 ключа), а также использовать как быполярный без использования отводов от обмоток;
  • С четирьмя обмотками - универсальный, подключив обмотки соответствующим образом можно использовать как быполярный или униполярный движок.

Рис. 9. Типы шаговых двигателей: биполярный, униполярный, с четырьмя обмотками.

Определить тип используемого двигателя можно, как правило, по количеству выводов на его корпусе, а также не помешает прозвонить все выводы тестером для определения есть ли соеднения между обмотками.

L298 + шаговый двигатель + Raspberry Pi

Теперь давайте подключим шаговый двигатель, в моем случае применен биполярный мощный шаговый двигатель, извлеченный из старого матричного принтера.

Для подключения одного биполярного двигателя потребуется два выхода драйвера на L298 (два H-моста). Для данного эксперимента модуль L298 нужно подключить к Raspberry Pi так же, как и в варианте с .

Прежде можете поэкспериментировать без малинки - подавать поочередно на входы модуля L298 напряжение 5В и посмотреть как вал двигателя будет выполнять шаги.

По сути дела, при помощи малинки, мы будем поочередно и с некоторой задержкой подавать импульсы на обмотки движка, чем заставим его вал вращаться в нужную нам сторону и с нужной скоростью.

Рис. 10. Подключение биполярного шагового двигателя к модулю L298 для управления через Raspberry Pi.

Если все уже подключено, то переходим к экспериментам с простой тестовой программой на Python, которая поможет понять как работать с шаговыми двигателем используя L298 + Raspberry Pi.

Создадим файл для скрипта и откроем его для редактирования:

Nano /home/pi/l298_stepper_motor_test.py

Вставляем в редактор следующий код скрипта на Python:

#!/usr/bin/env python # -*- coding: utf-8 -*- import time import RPi.GPIO as GPIO # Подготавливаем пины GPIO. GPIO.cleanup() GPIO.setmode(GPIO.BCM) GPIO.setup(4, GPIO.OUT) GPIO.output(4, GPIO.LOW) GPIO.setup(17, GPIO.OUT) GPIO.output(17, GPIO.LOW) GPIO.setup(27, GPIO.OUT) GPIO.output(27, GPIO.LOW) GPIO.setup(22, GPIO.OUT) GPIO.output(22, GPIO.LOW) # Временная задержка между шагами, сек. step_timeout = 0.0105 # Длительность импульса, сек. impulse_timeout = 0.008 # Шаг 1. GPIO.output(4, GPIO.HIGH) time.sleep(impulse_timeout) GPIO.output(4, GPIO.LOW) time.sleep(step_timeout) # Шаг 2. GPIO.output(17, GPIO.HIGH) time.sleep(impulse_timeout) GPIO.output(17, GPIO.LOW) time.sleep(step_timeout) # Шаг 3. GPIO.output(27, GPIO.HIGH) time.sleep(impulse_timeout) GPIO.output(27, GPIO.LOW) time.sleep(step_timeout) # Шаг 4. GPIO.output(22, GPIO.HIGH) time.sleep(impulse_timeout) GPIO.output(22, GPIO.LOW) time.sleep(step_timeout) # Ждем 10 секунд. time.sleep(10) # 20 раз по 4 шага в цикле. for i in range(0,20): GPIO.output(4, GPIO.HIGH) time.sleep(impulse_timeout) GPIO.output(4, GPIO.LOW) time.sleep(step_timeout) GPIO.output(17, GPIO.HIGH) time.sleep(impulse_timeout) GPIO.output(17, GPIO.LOW) time.sleep(step_timeout) GPIO.output(27, GPIO.HIGH) time.sleep(impulse_timeout) GPIO.output(27, GPIO.LOW) time.sleep(step_timeout) GPIO.output(22, GPIO.HIGH) time.sleep(impulse_timeout) GPIO.output(22, GPIO.LOW) time.sleep(step_timeout)

Делаем файл со скриптом исполняемым и запускаем его на исполнение:

Chmod +x /home/pi/l298_stepper_motor_test.py /home/pi/l298_stepper_motor_test.py

осле запуска скрипта, шаговый двигатель должен совершить 4 шага (вращение в одну сторону), потом подождав 10 секунд он снова начнет свое вращение и сделает уже 20*4 шагов.

А теперь рассмотрим пример интерактивной программы, которая позволяет управлять направлением и скоростью вращения (последовательные шаги) шагового двигателя с использованием клавиатуры.

#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys import curses import time import RPi.GPIO as GPIO # Функция для подготовки пинов GPIO def setup(*ports): GPIO.cleanup() # Режим именования пинов по названию, а не по номеру на плате GPIO.setmode(GPIO.BCM) for port in ports: # Установка пина на вывод + низкий уровень "0" GPIO.setup(port, GPIO.OUT) GPIO.output(port, GPIO.LOW) # Функция для подачи импульса на пин с некоторой задержкой (1 шаг) def impulse(port=0): GPIO.output(port, GPIO.HIGH) # Set the timeout value to be anough for one step time.sleep(0.008) GPIO.output(port, GPIO.LOW) time.sleep(timeout) # Выполняем установку нужных нам пинов GPIO setup(4, 17, 27, 22) # Задержка между шагами (по умолчанию) timeout = 0.0105 # Направление вращения (по умолчанию) direction = "r" # Инициализация экрана (модуль curses) stdscr = curses.initscr() # Реагировать на нажатие клавиш без подтверждения при помощи ENTER curses.cbreak() # Разрешить использование стрелочек на клавиатуре stdscr.keypad(1) # Не блокировать программу по времени при опросе событий stdscr.nodelay(1) # Отобразим на экране данные по умолчанию stdscr.addstr(0, 10, "Hit "q" to quit") stdscr.addstr(2, 10, "--->") stdscr.addstr(3, 10, "Timeout: " + str(timeout)) stdscr.refresh() # Главный цикл while True: # Набор импульсов для вращения вала мотора вправо if direction == "r": impulse(4) impulse(17) impulse(27) impulse(22) # Набор импульсов для вращения вала мотора влево elif direction == "l": impulse(22) impulse(27) impulse(17) impulse(4) # Считываем код нажатия клавиши и проверяем его key = stdscr.getch() if key != -1: # Клавиша "влево" меняет направление вращения: ВЛЕВО if key == curses.KEY_LEFT: # отображаем текст "<---" в позиции экрана 2, 10 stdscr.addstr(2, 10, "<---") # Изменим значение переменной с направлением вращения direction = "l" # Клавиша "вправо" меняет направление вращения: ВПРАВО elif key == curses.KEY_RIGHT: stdscr.addstr(2, 10, "--->") direction = "r" # Клавиша "вверх" ускоряет вращение elif key == curses.KEY_UP: # Уменьшаем задержку между шагами timeout = timeout - 0.0005 # Клавиша "вниз" замедляет вращение elif key == curses.KEY_DOWN: # Увеличиваем задержку между шагами timeout = timeout + 0.0005 # Клавиша "q" выполняет выход из программы elif key == ord("q"): stdscr.keypad(0) curses.echo() curses.endwin() os.system("clear") sys.exit() # Смотрим чтобы время задержки не перешло границу 0 if timeout <= 0: timeout = 0.0005 # Обновляем текст на экране stdscr.addstr(3, 10, "Timeout: " + str(timeout)) stdscr.refresh() time.sleep(0.01)

Теперь клацаем клавиши стрелок влево и вправо и смотрим как будет изменяться направление вращения вала двигателя, а при нажатии клавиш вверх и вниз скорость будет увеличиваться и уменьшаться соответственно.

Если же двигатель не вращается, то возможно что потребуется сменить полярность подключения одной из обмоток к модулю на L298.

Рис. 11. Программа управления биполярным шаговым двигателем, L298, Raspberry Pi.

Видео-демонстрация работы шагового двигателя:

Заключение

Надеюсь вы получили ответ на вопрос "что такое H-мост и как он работает", из экспериментов должно быть понятно как применять драйвер на микросхеме L298 и подключать к нему разные движки.

Важно заметить что в интернете можно найти готовые библиотеки и скрипты на Python для удобного управления двигателями при помощи H-моста на L298 с использованием Raspberry Pi.

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение . То есть вы должны понимать, какую основную функцию выполняет ваша схема . Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток . Их задача – соединять радиоэлементы.


Точка, где соединяются три и более проводников, называется узлом . Можно сказать, в этом месте проводки спаиваются:


Если пристально вглядеться в схему, то можно заметить пересечение двух проводников


Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга . В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.


Итак, давайте первым делом разберемся с надписями. R – это значит . Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это группа , к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов :

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся .

С – конденсаторы

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, предохранители, защитные устройства

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

L – катушки индуктивности и дроссели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

T – трансформаторы и автотрансформаторы

U – преобразователи электрических величин в электрические, устройства связи

V – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента . Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU – плавкий предохранитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK – счетчик реактивной энергии

PT – часы

QF

QS – разъединитель

RK – терморезистор

RP – потенциометр

RS – шунт измерительный

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, срабатывающие от температуры

SL – выключатели, срабатывающие от уровня

SP – выключатели, срабатывающие от давления

SQ – выключатели, срабатывающие от положения

SR – выключатели, срабатывающие от частоты вращения

TV – трансформатор напряжения

TA – трансформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD – диод , стабилитрон

VL – прибор электровакуумный

VS – тиристор

VT

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды


а ) общее обозначение

б ) мощностью рассеяния 0,125 Вт

в ) мощностью рассеяния 0,25 Вт

г ) мощностью рассеяния 0,5 Вт

д ) мощностью рассеяния 1 Вт

е ) мощностью рассеяния 2 Вт

ж ) мощностью рассеяния 5 Вт

з ) мощностью рассеяния 10 Вт

и ) мощностью рассеяния 50 Вт

Резисторы переменные


Терморезисторы


Тензорезисторы


Варисторы

Шунт

Конденсаторы

a ) общее обозначение конденсатора

б ) вариконд

в ) полярный конденсатор

г ) подстроечный конденсатор

д ) переменный конденсатор

Акустика

a ) головной телефон

б ) громкоговоритель (динамик)

в ) общее обозначение микрофона

г ) электретный микрофон

Диоды

а ) диодный мост

б ) общее обозначение диода

в ) стабилитрон

г ) двусторонний стабилитрон

д ) двунаправленный диод

е ) диод Шоттки

ж ) туннельный диод

з ) обращенный диод

и ) варикап

к ) светодиод

л ) фотодиод

м ) излучающий диод в оптроне

н ) принимающий излучение диод в оптроне

Измерители электрических величин

а ) амперметр

б ) вольтметр

в ) вольтамперметр

г ) омметр

д ) частотомер

е ) ваттметр

ж ) фарадометр

з ) осциллограф

Катушки индуктивности


а ) катушка индуктивности без сердечника

б ) катушка индуктивности с сердечником

в ) подстроечная катушка индуктивности

Трансформаторы

а ) общее обозначение трансформатора

б ) трансформатор с выводом из обмотки

в ) трансформатор тока

г ) трансформатор с двумя вторичными обмотками (может быть и больше)

д ) трехфазный трансформатор

Устройства коммутации


а ) замыкающий

б ) размыкающий

в ) размыкающий с возвратом (кнопка)

г ) замыкающий с возвратом (кнопка)

д ) переключающий

е ) геркон

Электромагнитное реле с разными группами контактов


Предохранители


а ) общее обозначение

б ) выделена сторона, которая остается под напряжением при перегорании предохранителя

в ) инерционный

г ) быстродействующий

д ) термическая катушка

е ) выключатель-разъединитель с плавким предохранителем

Тиристоры


Биполярный транзистор


Однопереходный транзистор


В различных электронных схемах часто возникает необходимость менять полярность напряжения, прикладываемого к нагрузке, в процессе работы. Схемотехника таких устройств реализуется с помощью ключевых элементов. Ключи могут быть выполнены на переключателях, электромагнитных реле или полупроводниковых приборах. Н-мост на транзисторах позволяет с помощью управляющих сигналов переключать полярность напряжения поступающего на исполнительное устройство.

В различных электронных игрушках, некоторых бытовых приборах и робототехнике используются коллекторные электродвигатели постоянного тока, а также двухполярные шаговые двигатели. Часто для выполнения какого-либо алгоритма нужно с помощью электрического сигнала быстро поменять полярность питающего напряжения с тем, чтобы двигатель технического устройства стал вращаться в противоположную сторону. Так робот-пылесос, наткнувшись на стену, мгновенно включает реверс и задним ходом отъезжает от препятствия. Такой режим реализуется с помощью Н-моста. Схема Н-моста позволяет так же изменять скорость вращения электродвигателя. Для этого на один из двух ключей подаются импульсы от широтно-импульсного модулятора (ШИМ).

Схемой управления режимами двигателя является h-мост. Это несложная электронная схема, которая может быть выполнена на следующих элементах:

  • Биполярные транзисторы
  • Полевые транзисторы
  • Интегральные микросхемы

Основным элементом схемы является электронный ключ. Принципиальная схема моста напоминает латинскую букву «Н», отсюда название устройства. В схему входят 4 ключа расположенных попарно, слева и справа, а между ними включена нагрузка.


На схеме видно, что переключатели должны включаться попарно и по диагонали. Когда включен 1 и 4 ключ, электродвигатель вращается по часовой стрелке. 2 и 3 ключи обеспечивают работу двигателя в противоположном направлении. При включении двух ключей по вертикали слева или справа произойдёт короткое замыкание. Каждая пара по горизонтали закорачивает обмотки двигателя и вращения не произойдёт. На следующем рисунке проиллюстрировано, что происходит, когда мы меняем положение переключателей:


Если мы заменем в схеме переключатели на транзисторы, то получим такой вот (крайне упрощенный) вариант:


Для того чтобы исключить возможное короткое замыкание h-мост на транзисторах дополняется входной логикой, которая исключает появление короткого замыкания. В современных электронных устройствах мостовые схемы изменения полярности дополняются устройствами, обеспечивающими плавное и медленное торможение перед включением реверсного режима.

Н-мост на биполярных транзисторах

Транзисторы в ключевых схемах работают по принципу вентилей в режиме «открыт-закрыт», поэтому большая мощность на коллекторах не рассеивается, и тип применяемых транзисторов определяется, в основном, питающим напряжением. Несложный h-мост на биполярных транзисторах можно собрать самостоятельно на кремниевых полупроводниковых приборах разной проводимости.


H-мост на биполярных транзисторах

Такое устройство позволяет управлять электродвигателем постоянного тока небольшой мощности. Если использовать транзисторы КТ816 и КТ817 с индексом А, то напряжение питания не должно превышать 25 В. Аналогичные транзисторы с индексами Б или Г допускают работу с напряжением до 45 В и током не превышающим 3 А. Для корректной работы схемы транзисторы должны быть установлены на радиаторы. Диоды обеспечивают защиту мощных транзисторов от обратного тока. В качестве защитных диодов можно использовать КД105 или любые другие, рассчитанные на соответствующий ток.

Недостатком такой схемы является то, что нельзя подавать на оба входа высокий потенциал, так как открытие обоих ключей одновременно вызовет короткое замыкание источника питания. Для исключения этого в интегральных мостовых схемах предусматривается входная логика, полностью исключающая некорректную комбинацию входных сигналов.

Схему моста можно изменить, поставив в неё более мощные транзисторы.

Н-мост на полевых транзисторах

Кроме использования биполярных транзисторов в мостовых схемах управления питанием, можно использовать полевые (MOSFET) транзисторы. При выборе полупроводниковых элементов обычно учитывается напряжение, ток нагрузки и частота переключения ключей, при использовании широтно-импульсной модуляции. Когда полевой транзистор работает в ключевом режиме, у него присутствуют только два состояния – открыт и закрыт. Когда ключ открыт, то сопротивление канала ничтожно мало и соответствует резистору очень маленького номинала. При подборе полевых транзисторов для ключевых схем следует обращать внимание на этот параметр. Чем больше это значение, тем больше энергии теряется на транзисторе. При минимальном сопротивлении канала выше КПД моста и лучше его температурные характеристики.

Дополнительным негативным фактором является зависимость сопротивления канала от температуры. С увеличением температуры этот параметр заметно растёт, поэтому при использовании мощных полевых транзисторов следует предусмотреть соответствующие радиаторы или активные схемы охлаждения. Поскольку подбор полевых транзисторов для моста связан с определёнными сложностями, гораздо лучше использовать интегральные сборки. В каждой находится комплементарная пара из двух мощных MOSFET транзисторов, один из которых с P каналом, а другой с N каналом. Внутри корпуса также установлены демпферные диоды, предназначенные для защиты транзисторов.

В конструкции использованы следующие элементы:

  • VT 1,2 – IRF7307
  • DD 1 – CD4093
  • R 1=R 2= 100 ком

Интегральные микросхемы с Н-мостом

В ключах Н-моста желательно использовать комплементарные пары транзисторов разной проводимости, но с одинаковыми характеристиками. Этому условию в полной мере отвечают интегральные микросхемы, включающие в себя один, два или более h-мостов. Такие устройства широко применяются в электронных игрушках и робототехнике. Одной из самых простых и доступных микросхем является L293D. Она содержит два h-моста, которые позволяют управлять двумя электродвигателями и допускают управление от ШИМ контроллера. Микросхема имеет следующие характеристики:

  • Питание – + 5 В
  • Напряжение питания электромотора – + 4,5-36 В
  • Выходной номинальный ток – 500 мА
  • Ток в импульсе – 1,2 А

Микросхема L298 так же имеет в своём составе два h-моста, но гораздо большей мощности. Максимальное напряжение питания, подаваемое на двигатель, может достигать + 46 В, а максимальный ток соответствует 4,0 А. Н-мост TB6612FNG допускает подключение двух коллекторных двигателей или одного шагового. Ключи выполнены на MOSFET транзисторах и имеют защиту по превышению температуры, перенапряжению и короткому замыканию. Номинальный рабочий ток равен 1,2 А, а максимальный пиковый – 3,2 А. Максимальная частота широтно-импульсной модуляции не должна превышать 100 кГц.

Мостовые устройства управления электродвигателями часто называют драйверами. Драйверами так же называют микросхемы, только обеспечивающие управление мощными ключевыми каскадами. Так в схеме управления мощным электродвигателем используется драйвер HIP4082. Он обеспечивает управление ключами, собранными на дискретных элементах. В них используются MOSFET транзисторы IRF1405 с N-каналами. Компания Texas Instruments выпускает большое количество интегральных драйверов предназначенных для управления электродвигателями разных конструкций. К ним относятся:

  • Драйверы для шаговых двигателей – DRV8832, DRV8812, DRV8711
  • Драйверы для коллекторных двигателей – DRV8816, DRV8848, DRV8412/32
  • Драйверы для бесколлекторных двигателей – DRV10963, DRV11873, DRV8332

На рынке имеется большой выбор интегральных мостовых схем для управления любыми электродвигателями. Сделать конструкцию можно и самостоятельно, применив качественные дискретные элементы.

error: